Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny fateful RNA

25.04.2006
Micro-RNA, a special type of RNA found in brain cells, plays an important role in the mechanisms of human brain development and in the emergence of certain mental diseases. This hypothesis was put forward by Evgeny Rogaev, a Russian neuroscientist. It is based on the data from publications and his own research conducted in Russia and the USA.

Micro-RNA is a special class of regulatory RNA just 19-22 nucleotides in length. Such micro-RNAs are the products of operation of short genes that do not encode proteins. Micro-RNA was found both in plants and in animals. Scientists assume that mammals have hundreds or, possibly, thousands of various sequences of micro-RNAs in their genome. Specialists are unable to give a more precise figure yet but they have already performed certain research that gives grounds to believe that micro-RNAs may participate in the pathogenesis of mental diseases.

Micro-RNAs are common in brain cells, and some of these molecules are mostly found just there. Experiments on Danio rerio, Caenorhabditis elegans and rats give evidence that normal development of the nervous system is impossible without micro-RNAs. Composition of micro-RNA in the neural tissue changes depending on the stage of the nervous system’s embryonal development.

Human brain diseases related to impairment of consciousness, intellect, mood and memory can be subdivided into two groups. They are diseases of nervous system’s development such as mental deficiency, autism, schizophrenia, and the group of neurodegenerative diseases (involving disintegration of nerve cells), for example, senile dementia and Parkinson’s disease.

Using computer algorithms, scientists demonstrated that potential micro-RNA targets include genes related to the nervous system’s development, developmental lagging, contact formation between neurons, and Alzheimer’s disease. However, the list of target genes depends on the computer program used to prepare the forecast, and its accuracy can only be verified experimentally.

Preliminary research conducted by Evgeny Rogaev and his colleagues demonstrated that such verification is feasible. Advanced research methods allow finding and identifying tiny micro-RNAs in the brain tissues of the deceased normal and mentally sick people and comparing them. A lot of mental diseases are, undoubtedly, inherited, but when comparing the sequences of genes that encode proteins, the scientists do not find significant differences between normal and sick people. Evgeny Rogaev believes that they should look for differences in the regulation of operation of genes encoding proteins rather than in their sequences. It is highly possible that micro-RNAs are exactly such regulators which define nervous system’s development and functioning.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Life Sciences:

nachricht Nerves control the body’s bacterial community
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>