Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny fateful RNA

25.04.2006
Micro-RNA, a special type of RNA found in brain cells, plays an important role in the mechanisms of human brain development and in the emergence of certain mental diseases. This hypothesis was put forward by Evgeny Rogaev, a Russian neuroscientist. It is based on the data from publications and his own research conducted in Russia and the USA.

Micro-RNA is a special class of regulatory RNA just 19-22 nucleotides in length. Such micro-RNAs are the products of operation of short genes that do not encode proteins. Micro-RNA was found both in plants and in animals. Scientists assume that mammals have hundreds or, possibly, thousands of various sequences of micro-RNAs in their genome. Specialists are unable to give a more precise figure yet but they have already performed certain research that gives grounds to believe that micro-RNAs may participate in the pathogenesis of mental diseases.

Micro-RNAs are common in brain cells, and some of these molecules are mostly found just there. Experiments on Danio rerio, Caenorhabditis elegans and rats give evidence that normal development of the nervous system is impossible without micro-RNAs. Composition of micro-RNA in the neural tissue changes depending on the stage of the nervous system’s embryonal development.

Human brain diseases related to impairment of consciousness, intellect, mood and memory can be subdivided into two groups. They are diseases of nervous system’s development such as mental deficiency, autism, schizophrenia, and the group of neurodegenerative diseases (involving disintegration of nerve cells), for example, senile dementia and Parkinson’s disease.

Using computer algorithms, scientists demonstrated that potential micro-RNA targets include genes related to the nervous system’s development, developmental lagging, contact formation between neurons, and Alzheimer’s disease. However, the list of target genes depends on the computer program used to prepare the forecast, and its accuracy can only be verified experimentally.

Preliminary research conducted by Evgeny Rogaev and his colleagues demonstrated that such verification is feasible. Advanced research methods allow finding and identifying tiny micro-RNAs in the brain tissues of the deceased normal and mentally sick people and comparing them. A lot of mental diseases are, undoubtedly, inherited, but when comparing the sequences of genes that encode proteins, the scientists do not find significant differences between normal and sick people. Evgeny Rogaev believes that they should look for differences in the regulation of operation of genes encoding proteins rather than in their sequences. It is highly possible that micro-RNAs are exactly such regulators which define nervous system’s development and functioning.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>