Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Environmental effects on genetic adaptation and population dynamics

25.04.2006
It seems intuitive that genes are affected by selection as a result of environment. In fact there is little evidence thus far that such genetic effects impact year-to-year population dynamics. Of course to provide such evidence the right gene (that causes a specific genetic effect) needs to be studied and a detailed knowledge of the complex and powerful environmental factors against which this effect plays out is necessary.

In a new study published online in the open-access journal PLoS Biology, Ilkka Hanski and Ilik Saccheri present their analysis of the Glanville fritillary butterfly on the Åland Islands in Finland, where its population dynamics are well studied in relation to its habitat—patches of meadows spread across the landscape. They provide evidence that variants of one gene influence population growth in a species of butterfly in a complex and habitat-dependent manner.

The authors investigated the gene phosphoglucose isomerase (Pgi). The Pgi gene has several forms, or alleles; The f and d alleles are most common—previously, butterflies with either ff or fd genotype were seen to have a higher flight metabolic rate and to be more fecund than those with a dd genotype—making the gene a good candidate for a population effect.

Applying a simultaneous analysis of genotype, population growth, and habitat among >130 small butterfly populations, the authors showed that, in small meadows, growth was highest when the ff or fd genotypes predominated, but in larger meadows, dd was favored the opposite was true—these genotypes predicted a decline in numbers instead of a rise, while dd was favored. This effect was specific to Pgi, as there was no correlation for six other genes analyzed. The authors suggest this might be related to differences in maturation and egg laying. Females with f alleles mature quickly and lay more eggs early on, just the strategy for exploiting a small patch, from which many butterflies risk drifting away rather quickly in their life. Females with d alleles mature later but also die later, allowing them to exploit a larger habitat more thoroughly. There are likely other reasons for the genotype-habitat area effect, since Pgi is likely to influence many different aspects of life history.

This study confirms that intraspecific genetic variation can influence population growth. It also brings home the point that there is not one specific “best” genotype—the favorable genotype will alter with environment according to the selective pressures in play.

Citation: Hanski I, Saccheri I (2006) Molecular-level variation affects population growth in a butterfly metapopulation. PLoS Biol 4(5): e129.

CONTACT:
Ilkka Hanski
University of Helsinki
Helsinki, Finland FIN-00014
+358-9-191-57745
+358-9-191-57694 (fax)
ilkka.hanski@helsinki.fi

Paul Ocampo | alfa
Further information:
http://dx.doi.org/10.1371/journal.pbio.0040129
http://www.plosbiology.org

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>