Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parallel evolution of an alternate genetic code in arthropod mitochondria

25.04.2006
Coding for arthropods—what’s so special about insects and spiders?

The central dogma of molecular biology is that DNA makes RNA makes protein. This relies on a specific underlying code which relates given triplets of RNA nucleotides into specific amino acids. Each of the 20 amino acids is represented by one or more RNA triplets, or codons: UAC is decoded as tyrosine, for example, and UGC as cysteine. (U is the RNA nucleotide containing uracil, A is adenine, C is cytosine, and G is guanine.) For some time the code had been thought to be the same in all organisms. But exceptions have been seen before, particularly in mitochondria.

In a new study published online this week in the open-access journal PLoS Biology, Federico Abascal, Rafael Zardoya, and colleagues show that in the mitochondria of arthropod there are two nonstandard codes, and suggest that genetic code changes within a lineage may be more frequent than was earlier believed.

The authors aligned the mitochondrial coding sequence from >600 animal species looking for conserved codons and identifying which amino acid (AA) it specified in the corresponding protein. The most frequent AA was taken to be the canonical translation of that codon. What they found was that although most codons adhered to the common genetic code in all species, there was nonetheless a surprising trend in the arthropods, the largest of all animal phyla. Typically, AGG translates as the amino acid serine. However, among the arthropod mitochondrial genomes, AGG coded for serine in some species and lysine in others. The authors’ analysis of the patterns of change also suggests that the original arthropod mitochondrion used AGG for lysine, not serine.

The observed variety suggests the code has changed multiple times between the two genetic codes. It might be that pairing of AGG and lysine is disadvantageous for the organism employing it, so that loss or reversion over time would be favored. This might also suggest the existence of multiple other nonstandard codes within other lineages. Who knows what other alternatives might be decoded with this method in the future.

Citation: Abascal F, Posada D, Knight RD, Zardoya R (2006) Parallel evolution of the genetic code in arthropod mitochondrial genomes. PLoS Biol 4(5): e127.

CONTACT:
Federico Abascal
Museo Nacional de Ciencias Naturales
Madrid, 28006
Spain
+34- 91-411-1328
+34- 91-564-5078 (fax)
fabascal@mncn.csic.es

Paul Ocampo | alfa
Further information:
http://www.plosbiology.org
http://dx.doi.org/10.1371/journal.pbio.0040127

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>