Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


MIT method allows 3-D study of cells -- Work could impact tissue engineering

MIT bioengineers have devised a new technique that makes it possible to learn more about how cells are organized in tissues and potentially even to regrow cells for repairing areas of the body damaged by disease, accidents or aging.

The method gives them unprecedented control over organizing cells outside the body in three dimensions, which is how they exist inside the body. It uses electricity to move cells into a desired position, followed by light to lock them into place within a gel that resembles living tissue.

Cells traditionally have been studied in two dimensions in a Petri dish, but certain cells behave differently in two dimensions than in three.

"We have shown that the behavior of cartilage cells is affected significantly when they are organized in 3-D," as is the behavior of other types of cells like stem cells, said MIT Associate Professor Sangeeta Bhatia of the Harvard-MIT Division of Health Sciences and Technology (HST), one author of a paper on the technique due to appear in the May issue of Nature Methods.

"This raises questions about how cells might sense their organization in 3-D and how important this might be in other tissues," said Dirk Albrecht, a postdoctoral associate in Bhatia’s lab and lead author of the paper. "We now have a method to answer some of these questions in the lab."

Scientists have until now studied cells in 3-D by placing them randomly into a gel. The cells clump together into "cell spheroids," but that is a slow process, and the size and shape of the cell clumps vary significantly. In addition, cells that communicate by direct contact can end up too far apart.

The new technique allows for precise control of cell organization, and takes minutes to perform compared to hours or days for the other method.

Albrecht and his colleagues have been using a micropatterning technique to carefully position the cells within about 10 microns of each other. That’s nearly the diameter of a cell and about one-fifth the diameter of a human hair. The technique uses a device made with photolithography, the same process used to create circuit patterns on electronic microchips.

In the paper, the MIT researchers said they have formed more than 20,000 cell clusters with precise sizes and shapes within a single gel. They have since scaled that up several-fold. They also have created layers of different cells, attempting to mimic the structure of tissue inside the body.

While the technique may one day be applied to engineer tissues for medical applications, its first use will be for basic research on how cells are organized, how they function and communicate in tissues, and how they develop into organs or tumors. The 3-D organization of cells also may help researchers understand how cells respond to drugs when they are in a normal state compared to a diseased state like cancer.

"We also think this technique will be useful for building engineered tissues in specific ways," Bhatia said. "It wasn’t possible until now to get this degree of control over cells in 3-D."

Other authors on the paper are MIT HST postdoctoral fellow Greg Underhill, University of California at San Diego Professor of Bioengineering Robert Sah and UCSD alumnus Travis Wassermann.

The authors have applied for a patent on their work.

The research was funded by The Whitaker Foundation, the National Science Foundation, the National Institutes of Health, the David and Lucille Packard Foundation and NASA.

Elizabeth A. Thomson | MIT News Office
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>