Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Viral protein helps infected T cells stick to uninfected cells

24.04.2006
New research shows that a protein made by a cancer virus causes infected immune cells to cling to other immune cells, enabling the virus to spread.

The virus, the human T lymphotropic virus type 1 (HTLV-1), is transmitted mainly when infected cells known as T lymphocytes, or T cells, touch uninfected T cells.

The finding helps explain how this cell-to-cell transmission happens. It suggests that an HTLV-1 protein known as p12 activates infected T cells and causes them to become sticky and adhere to other T cells.

The greater stickiness happens because the p12 viral protein causes special adherence proteins found on the surface of T cells to cluster in large groups – something that normally happens when T cells touch to communicate with one another during an immune response.

The findings also suggest that a drug that inhibits the p12 protein might also help prevent HTLV-1 transmission.

The research, published in the May issue of the Journal of Immunology, was led by scientists with The Ohio State University Comprehensive Cancer Center and the OSU College of Veterinary Medicine.

“This study indicates that the p12 protein plays an important role in programming infected cells for cell-to-cell transmission,” says principal investigator Michael D. Lairmore, professor and chair of veterinary biosciences and a member of the OSU Comprehensive Cancer Center.

“It shows that this virus takes advantage of something that T cells do normally, but, in this case, the virus is stimulating the interaction with other T cells rather than a normal immune response.”

HTLV-1 infects an estimated 15 to 25 million people worldwide. About 5 percent of those infected develop adult T cell leukemia or lymphoma (ATLL), an aggressive disease characterized by a long latent period and the proliferation of T cells. The infected cells are spread from person to person during sexual activity and by blood and breast milk.

In the body, the HTLV-1 mainly targets immune-system cells known as CD4 T lymphocytes. These immune cells coordinate immune responses in part through physical contact with other immune cells. The cells adhere to one another using a protein known as LFA-1, which is found on the cells’ surface.

In this study, Lairmore and his collaborators examined the influence of the p12 protein on LFA-1 adhesion. The researchers compared cells infected with HTLV-1 that lacked the p12 protein to cells that were infected by normal HTLV-1.

They found that the p12 protein not only activated the T cells, but caused the cells infected with normal HTLV-1 to have far greater adherence than cells infected with viruses that lacked p12 in a standardized adherence test.

In addition, they showed that the greater adherence did not occur because the infected cells made more of the LFA-1 protein, but rather because already existing LFA-1 protein molecules gathered into large clusters on the cell surface.

(LFA-1 proteins float in the cell membrane like buoys in semisolid gelatin. They can move across the surface of the cell and form clusters when directed to do so by signals from within the cell.)

“Our study is the first to show that HTLV-1 p12 not only enhances the activity of infected T cells, but that it promotes the spread of the virus from cell to cell by causing LFA-1 receptors to cluster on the cell surface,” Lairmore says.

Funding from the National Cancer Institute supported this research.

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>