Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient DNA provides clues to the evolution of social behavior

24.04.2006
A rare Patagonian rodent known as the colonial tuco-tuco fascinates biologists because it seems to defy all odds. This threatened species has so little genetic diversity that the slightest whiff of climate change or disease should have wiped it off the face of the earth long ago. Yet the hearty gopher-like creature has not only managed to survive for thousands of years in the harsh climate of the Argentine highlands, it has evolved a complex social structure that’s unique among the more than 50 closely related tuco-tuco species.

Stanford University biologist Elizabeth Hadly and her colleagues are using DNA extracted from ancient teeth-some more than 10,000 years old-to unravel the colonial tuco-tuco’s mysterious past and pinpoint the cause of its low genetic diversity. The results are published in the April 20 edition of the journal PLoS Genetics.

’’This advance in the analysis is fundamentally different from anything anyone has done with ancient DNA,’’ says Hadly, an associate professor of biological sciences and co-author of the study. ’’What we’re trying to do is basically make a moving picture of their history instead of just a snapshot.’’

Adopting a colonial lifestyle may have been the key to the rodent’s survival, Hadly asserts, and could provide insight into the evolution of social behavior in other animals, including ants and humans.

Population crash

Named for the ’’tuc-tuc-tuc’’ sound of its call, the colonial tuco-tuco (Ctenomys sociabilis) lives in remote highland savannah areas of southern Argentina. Unlike the more than 50 other tuco-tuco species that live mostly solitary lives, C. sociabilis lives in colonies. Several females frequently share one burrow and in captivity are known to nurse one another’s young.

Almost entirely subterranean, colonial tuco-tucos rarely leave their burrows except for brief forays to collect the grassy vegetation on which they feed. When they do leave their colonies, the rodents often make a tasty meal for prowling owls. For thousands of years, these owls have roosted in two caves near the Chilean border and regurgitated pellets of indigestible fur, bones and teeth while they rest. From these teeth, scientists can determine which rodent species lived in a roughly 3-mile radius of the cave at any given time.

Using modern and ancient DNA from tuco-tuco teeth found in the two caves, Stanford graduate student Yvonne Chan, lead author of the PLoS Genetics study, mapped the rodent population through time. Her results show that over the last 10,000 years, the once dominant colonial tuco-tuco, C. sociabilis, was gradually crowded out of the northern cave area by a larger species of tuco-tuco, C. haigi. Around 3,000 years ago, C. sociabilis disappeared entirely from the northern cave site. At the same time, the genetic diversity of C. sociabilis in the southern cave declined precipitously.

’’When you talk about genetic variation being lost, you need to really reduce [the population] to a small number of individuals,’’ Chan says.

By fitting modern and ancient DNA data into a standard population genetics model, Chan was able to pinpoint the drastic decline of C. sociabilis to about 2,600 years ago, when the population was likely reduced to less than 300 individuals. When a population becomes that small, it loses much of its genetic diversity-a phenomenon known as a genetic bottleneck. Chan thinks that a volcanic eruption known to have occurred in the Andes roughly 3,000 years ago, combined with environmental change and competition from the larger species of tuco-tuco, likely caused the die-off.

Most genetic studies rely entirely on modern DNA to estimate historical population size, but Hadly and Chan’s technique provides much more detailed information. ’’You can’t get the bottleneck time or the bottleneck size without both modern and ancient DNA,’’ Chan explains.

Social evolution

Determining how the colonial tuco-tuco’s diversity got so low only solves part of the mystery. ’’The really curious thing is how the species managed to persist for around 3,000 years with almost no genetic variation,’’ Hadly says. ’’Genetic variation is the toolkit for dealing with whatever the environment has to throw at you. If you have only a couple of tools, you don’t have a lot of resilience for dealing with an unexpected event.’’

According to Chan, the evolution of the colonial tuco-tuco’s social behavior may be linked to the population bottleneck. Because all surviving colonial tuco-tucos are closely related, it makes sense evolutionarily for individuals to cooperate, she says.

’’If you’re closely related to everyone, there’s not as much reason to fight,’’ Chan explains. ’’Tucos have a high cost to dispersal-if they leave their burrow they tend to get eaten. If they stay home and help their sisters breed, it makes sense because they’ll be helping to pass on genes that are almost identical to their own.’’

No one knows exactly when social behavior evolved in C. sociabilis, but Hadly suspects it was a response to the population crash. ’’Maybe the evolution of sociality actually confers some advantage to withstanding periods of low genetic diversity,’’ she says. ’’Most behaviorists would say that sociality is so complicated that it takes a while to evolve, but maybe if a species has to be social to survive, social behavior could evolve pretty rapidly.’’

If so, the study of rare Patagonian tuco-tucos could have implications for understanding the evolution of sociality in other species that have experienced evolutionary bottlenecks, Hadly says. Population crashes and migration events with a small founding population may have encouraged the rapid development of social behavior in the Argentine ant when it colonized North America, she says, and even in ancient human populations. At the very least, combining ancient and modern DNA with population models will help geneticists understand the role population size and structure play in the maintenance of genetic diversity.

’’I think eventually this will feed back into modifying our understanding of population genetic theory and how sensitive it is to real-life events,’’ Hadly explains.

Most of the work conducted in Hadly’s lab focuses on using ancient DNA to examine how living species have responded to climate change in the past. With this information, she hopes to gain insights into the way current global warming trends will affect rare and threatened species, such as the colonial tuco-tuco.

’’What better way to understand how tuco-tuco populations respond to environmental changes than to look at 10,000 years of their history,’’ she says. ’’They’re the survivors of the last big extinction event, so it seems logical to me that we should know how they did that.’’

Mark Shwartz | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>