Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein’s potential as a regulator of brain activity discovered

21.04.2006
UCI study points to new therapeutic possibilities for epilepsy and neurodegenerative diseases

UC Irvine researchers have found that a protein best known for building connections between nerve cells and muscle also plays a role in controlling brain cell activity. The finding points to possible therapeutic applications in the development of new drugs for treatment of epilepsy and neurodegenerative disorders.

Martin Smith, professor of anatomy and neurobiology in the School of Medicine, and his UCI colleagues discovered that agrin -- a protein that directs synapse formation between nerve and muscle cells -- can also inhibit the function of "pumps" that control sodium and potassium levels within cells.

These pumps, called sodium-potassium ATPases -- or sodium pumps, for short -- are especially important in electrically excitable cells, where they provide the basis for electrical impulses, known as action potentials, which are responsible for muscle contraction and signaling between nerve cells in the brain. They do this by pumping sodium out of a cell and pumping potassium in, setting up an electrochemical gradient -- in a sense, turning the cell into a battery.

If this activity isn’t properly moderated, uncontrollable electrical impulses can be triggered, which is one of the cellular mechanisms behind an epileptic seizure, for instance.

This is where agrin comes into action. The UCI researchers observed in laboratory tests that agrin controls the excitability of nerve cells in the brain by regulating sodium pump activity. Adding agrin caused nerve cells to fire electrical impulses uncontrollably. In turn, the researchers found that they could block these electrical impulses by introducing small fragments of agrin, which prevented the full agrin proteins from binding their sites on the sodium pump molecules and initiating action potentials.

"The ability of agrin to modulate nerve cell excitability suggests that the agrin-sodium pump interactions can be exploited as a novel therapeutic target for epilepsy and other brain disorders," Smith said.

Agrin proteins are also expressed in heart tissue, and Smith notes that sodium pump inhibitors, such as digoxin, are commonly used to treat congestive heart failure. Agrin may, therefore, have therapeutic value for the treatment of diseases affecting tissues and organs outside of the brain.

Tom Vasich | EurekAlert!
Further information:
http://www.uci.edu
http://www.today.uci.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>