Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salk research challenges concept that motion perception is all black and white

20.04.2006
Researchers at the Salk Institute for Biological Studies have discovered a neural circuit that is likely to play an important role in the visual perception of moving objects. Their finding, published in the April issue of the journal Neuron, forces neurobiologists to rethink the neural pathways that our brain relies on to detect motion.

It had long been assumed that sensory information about color and fine detail is relatively unimportant for the perception of moving objects. Mainly, because the neural pathways in the brain carrying color and fine detail information seemed to be completely separate from areas of the brain previously associated with motion processing.

In an elegant anatomical study, Salk researchers now show that a neural pathway carrying color and fine detail does connect to the motion processing areas of the cortex (the outer layer of the brain), and this information most likely helps the brain detect moving objects.

"There are many different kinds of cues in the visual environment that can be used to detect motion – basically anything that is moving," says Edward M. Callaway, Ph.D., senior author of the study and a professor in the Systems Neurobiology Laboratory. "We asked the question, ’Is motion processing taking advantage of the full range of possible cues?’ "

This study demonstrates, for the first time, that it is.

Our eyes take in the visual environment and break the incoming images down into three main components: color, position, and brightness. These pieces of information are channeled from the eye to the brain along separate, specialized pathways. The parvocellular (P) pathway carries information about color and fine spatial detail. The magnocellular (M) pathway, on the other hand, is colorblind and has poor spatial resolution; instead, it is sensitive to low contrast and rapid changes. The visual cortex uses the information from these pathways to compute further details about motion, shape, and color.

Until now, it was thought that only the M pathway connected to the cortical motion processing area called MT. This is because the M and P pathways remain separate as they extend through the brain to the primary visual cortex (V1). And the cells in V1 that provide input to MT appeared to receive input from only the M pathway. The new results show that these cells also receive input from the P pathway.

Callaway and his colleagues used a system based on the rabies virus, whose unique infectious properties allowed them to trace neural circuits in reverse, from MT back to the distinct M and P cells that connect to V1. This technique, known as trans-synaptic tracing, showed that the M and P pathways merge before they enter the MT area, on a specialized population of neurons in an area of V1 known as layer 6. These layer 6 neurons, in turn, connect directly with neurons in the MT region, carrying the merged M and P signal onward for further processing.

As graduate student and co-first author Jonathan J. Nassi put it, "We are really pioneering the use of trans-synaptic viral tracing to study the visual system. Already, with our first study and experiments, we’re having to rethink how the visual system is wired-up."

Part of the reason why scientists had overlooked this circuit was because the M pathway is known to be more sensitive to rapid changes. Historically, according to Callaway, "people tended to think about detection of fast motion changes. But we also need to detect the motion of things that are moving more slowly. The addition of the P pathway to the motion system helps us to see movement of things to which the M pathway is blind."

An example where the P pathway would be important for motion detection is a colored, slowly moving lizard camouflaged against a background of sand. While the M pathway would be blind to the lizard, the P pathway would detect its color, fine detail and slow movement.

In addition to Callaway, the Salk research team included joint lead authors Nassi and post-doctoral researcher David C. Lyon, Ph.D.

Gina Kirchweger | EurekAlert!
Further information:
http://www.salk.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>