Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salk research challenges concept that motion perception is all black and white

20.04.2006
Researchers at the Salk Institute for Biological Studies have discovered a neural circuit that is likely to play an important role in the visual perception of moving objects. Their finding, published in the April issue of the journal Neuron, forces neurobiologists to rethink the neural pathways that our brain relies on to detect motion.

It had long been assumed that sensory information about color and fine detail is relatively unimportant for the perception of moving objects. Mainly, because the neural pathways in the brain carrying color and fine detail information seemed to be completely separate from areas of the brain previously associated with motion processing.

In an elegant anatomical study, Salk researchers now show that a neural pathway carrying color and fine detail does connect to the motion processing areas of the cortex (the outer layer of the brain), and this information most likely helps the brain detect moving objects.

"There are many different kinds of cues in the visual environment that can be used to detect motion – basically anything that is moving," says Edward M. Callaway, Ph.D., senior author of the study and a professor in the Systems Neurobiology Laboratory. "We asked the question, ’Is motion processing taking advantage of the full range of possible cues?’ "

This study demonstrates, for the first time, that it is.

Our eyes take in the visual environment and break the incoming images down into three main components: color, position, and brightness. These pieces of information are channeled from the eye to the brain along separate, specialized pathways. The parvocellular (P) pathway carries information about color and fine spatial detail. The magnocellular (M) pathway, on the other hand, is colorblind and has poor spatial resolution; instead, it is sensitive to low contrast and rapid changes. The visual cortex uses the information from these pathways to compute further details about motion, shape, and color.

Until now, it was thought that only the M pathway connected to the cortical motion processing area called MT. This is because the M and P pathways remain separate as they extend through the brain to the primary visual cortex (V1). And the cells in V1 that provide input to MT appeared to receive input from only the M pathway. The new results show that these cells also receive input from the P pathway.

Callaway and his colleagues used a system based on the rabies virus, whose unique infectious properties allowed them to trace neural circuits in reverse, from MT back to the distinct M and P cells that connect to V1. This technique, known as trans-synaptic tracing, showed that the M and P pathways merge before they enter the MT area, on a specialized population of neurons in an area of V1 known as layer 6. These layer 6 neurons, in turn, connect directly with neurons in the MT region, carrying the merged M and P signal onward for further processing.

As graduate student and co-first author Jonathan J. Nassi put it, "We are really pioneering the use of trans-synaptic viral tracing to study the visual system. Already, with our first study and experiments, we’re having to rethink how the visual system is wired-up."

Part of the reason why scientists had overlooked this circuit was because the M pathway is known to be more sensitive to rapid changes. Historically, according to Callaway, "people tended to think about detection of fast motion changes. But we also need to detect the motion of things that are moving more slowly. The addition of the P pathway to the motion system helps us to see movement of things to which the M pathway is blind."

An example where the P pathway would be important for motion detection is a colored, slowly moving lizard camouflaged against a background of sand. While the M pathway would be blind to the lizard, the P pathway would detect its color, fine detail and slow movement.

In addition to Callaway, the Salk research team included joint lead authors Nassi and post-doctoral researcher David C. Lyon, Ph.D.

Gina Kirchweger | EurekAlert!
Further information:
http://www.salk.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>