Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On a fly’s wing, scientists tally evolution’s winners and losses

20.04.2006
Evolution has always been a game of wins and losses.

Anatomical features, scientists know, come and go. The animal kingdom is full of critters that have independently gained or lost similar features. Whales and snakes, for instance, have lost their legs. Winged flight evolved separately in birds, bats and pterosaurs at different times in evolutionary history.

Now, writing today (April 20, 2006) in the journal Nature, a team of scientists from the Howard Hughes Medical Institute (HHMI) at the University of Wisconsin-Madison, reveal the discovery of the molecular mechanisms that allow animals to switch genes on or off to gain or lose anatomical characteristics.

"Evolution can and does repeat itself," says Sean B. Carroll, a UW-Madison genetics professor and senior author of the new Nature report that describes how males of different fruit fly species have independently gained -- and repeatedly lost -- the wing spots that make them appealing to females.

"These spots have appeared and disappeared independently in different species at different times over the course of evolutionary history, and have been junked at least five times in one particular group," says Benjamin Prud’homme, a UW-Madison post-doctoral fellow working in Carroll’s lab and the lead author of the new study. "We have shown that each of these transitions corresponds with changes in how a certain gene is used."

The new study reveals how evolution occurs at the finest level of detail and explains the molecular mechanisms at work when animals lose or gain features. In the fruit fly, a gene known as "yellow" is responsible for the fly’s wing decoration.

"The gene is like a paintbrush," says Carroll. "But it needs instructions as to where to paint. Little switches embedded in DNA around the gene have the instructions. It is these switches that are evolving. The fly can lose a spot because of a very small change in his spot switch."

Known as "regulatory elements," the switches that govern gene activity are DNA sequences that act like toggles to turn genes on or off. Individual genes can have several switches, Carroll notes, each one devoted to controlling the gene in a different tissue or body part.

In the case of fruit flies, the changes in the switches’ activity are driven by the preferences of females. The flies meet on flowers and the male fly -- to put the female in the mood -- waves his wings and displays his conspicuous wing spots.

"Female preference is a strong force in the evolution of anatomy," explains Prud´homme. "This phenomenon -- sexual selection -- is all over the animal kingdom. It was one of Darwin’s great ideas."

Finding the same gene and the same processes at work -- molecular switch evolution -- in two distantly related species of fly is remarkable, according to Carroll, because it shows how and why evolution repeats itself.

"The funny thing is they came up with the same solution," Carroll says. "The big picture is that we are seeing the repetition of evolution -- in animals widely divergent in time and space -- at several key levels."

Sean B. Carroll | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht Embryonic development: How do limbs develop from cells?
18.05.2018 | Humboldt-Universität zu Berlin

nachricht Reading histone modifications, an oncoprotein is modified in return
18.05.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>