Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On a fly’s wing, scientists tally evolution’s winners and losses

20.04.2006
Evolution has always been a game of wins and losses.

Anatomical features, scientists know, come and go. The animal kingdom is full of critters that have independently gained or lost similar features. Whales and snakes, for instance, have lost their legs. Winged flight evolved separately in birds, bats and pterosaurs at different times in evolutionary history.

Now, writing today (April 20, 2006) in the journal Nature, a team of scientists from the Howard Hughes Medical Institute (HHMI) at the University of Wisconsin-Madison, reveal the discovery of the molecular mechanisms that allow animals to switch genes on or off to gain or lose anatomical characteristics.

"Evolution can and does repeat itself," says Sean B. Carroll, a UW-Madison genetics professor and senior author of the new Nature report that describes how males of different fruit fly species have independently gained -- and repeatedly lost -- the wing spots that make them appealing to females.

"These spots have appeared and disappeared independently in different species at different times over the course of evolutionary history, and have been junked at least five times in one particular group," says Benjamin Prud’homme, a UW-Madison post-doctoral fellow working in Carroll’s lab and the lead author of the new study. "We have shown that each of these transitions corresponds with changes in how a certain gene is used."

The new study reveals how evolution occurs at the finest level of detail and explains the molecular mechanisms at work when animals lose or gain features. In the fruit fly, a gene known as "yellow" is responsible for the fly’s wing decoration.

"The gene is like a paintbrush," says Carroll. "But it needs instructions as to where to paint. Little switches embedded in DNA around the gene have the instructions. It is these switches that are evolving. The fly can lose a spot because of a very small change in his spot switch."

Known as "regulatory elements," the switches that govern gene activity are DNA sequences that act like toggles to turn genes on or off. Individual genes can have several switches, Carroll notes, each one devoted to controlling the gene in a different tissue or body part.

In the case of fruit flies, the changes in the switches’ activity are driven by the preferences of females. The flies meet on flowers and the male fly -- to put the female in the mood -- waves his wings and displays his conspicuous wing spots.

"Female preference is a strong force in the evolution of anatomy," explains Prud´homme. "This phenomenon -- sexual selection -- is all over the animal kingdom. It was one of Darwin’s great ideas."

Finding the same gene and the same processes at work -- molecular switch evolution -- in two distantly related species of fly is remarkable, according to Carroll, because it shows how and why evolution repeats itself.

"The funny thing is they came up with the same solution," Carroll says. "The big picture is that we are seeing the repetition of evolution -- in animals widely divergent in time and space -- at several key levels."

Sean B. Carroll | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>