Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular imaging may lead to earlier diagnosis of childhood respiratory virus

20.04.2006
Scientists have used a powerful molecular imaging technique to see inside living cells infected with the most pervasive and potentially fatal childhood respiratory virus known to medicine -- respiratory syncytial virus (RSV).

The technique is yielding insight on viruses – such as RSV, human influenza, hepatitis C, West Nile virus and severe acute respiratory syndrome (SARS) -- that replicate with the help of proteins encoded by ribonucleic acid (RNA) inside the cell. Ultimately, the research could to lead to early and rapid detection of viral infection and the design of new antiviral drugs.


An epi-fluorescence microscopy image shows human RSV viral RNA in aggregates, called inclusion bodies, and in filament form, growing in green monkey kidney cells, using molecular-scale probes called molecular beacons molecular beacons. Credit: Image Courtesy of Phil Santangelo


Confocal microscopy images reveal the three-dimensional structure of bovine RSV viral RNA in living, infected bovine nasal cells using molecular-scale probes called molecular beacons. Credit: Image Courtesy of Phil Santangelo

Scientists and engineers at the Georgia Institute of Technology and the University of Georgia are studying bovine and human RSV with molecular-scale probes – called molecular beacons – that are engineered oligonucleotides (short sequences of RNA or DNA) shaped like a hairpin with a fluorescent dye molecule on one end and a quencher molecule on the other end. They are designed to fluoresce only when they bind to a complementary target – in this case, RSV genomic RNA.

"For the first time, we were able to visualize an important part of the RSV virus -- its genome -- in live, infected cells," said Phil Santangelo, a research engineer in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University. "Our molecular beacons attach to the virus and glow inside infected cells as the virus grows, replicates and infects other cells. We can now see that happen in real time in cultures in the lab.

"That’s very different from how scientists have studied viruses in past; they’ve looked at viruses in fixed (or preserved) cells," he added. "…. Within the first week of studying human RSV in living cells, I learned something new because I was looking at it live."

Molecular beacons were originally developed at the Public Health Research Institute in New Jersey in the late 1990s. They were initially used for in vitro assays outside cells. But Santangelo and former Georgia Tech Ph.D. student Nitin Nitin, now a postdoctoral researcher at Rice University, devised methods for getting the beacons inside the cell without destroying the probe and without changing the cells.

Santangelo will give an invited presentation on his research on April 20 at the Materials Research Society meeting in San Francisco. The research is funded under a National Institutes of Health grant to Professors Shuming Nie and Gang Bao – both in the Department of Biomedical Engineering at Georgia Tech and Emory -- to develop new, high-sensitivity live-cell probes. In this study, Santangelo, who works for Bao, collaborated with Amelia Woolums, an associate professor of large animal medicine at UGA.

They determined their molecular beacon techniques deliver high-sensitivity and high-specificity results in both bovine and human RSV strains. "The RSV genome is interesting in that it is 15,000 nucleotides long, and one of its RNA sequences repeats itself nine times," Santangelo explained. "So we were able to bind up to nine probes to that sequence, and that helped us achieve very high sensitivity to the virus. In the human virus, in fact, we were able to see a single RSV virion."

Also, researchers were able to detect virion aggregates in bovine RSV within the first day in culture, Santangelo noted. Typically, veterinarians cannot detect RSV until after five or six days of incubation.

Bovine RSV can be a major problem in cows, which represent a good animal model for human RSV. Calves have RSV symptoms similar to those in human babies, and the disease pathology is similar. So studying bovine RSV yields information about the strain that infects humans, he added. Also in this study, researchers used confocal microscopy to view very thin sections of the RSV viral genome in live, infected cells. This technique allowed them to reconstruct the viral RNA aggregates in three dimensions.

"Most pathologists look at thick sections of RSV in formaldehyde, but our 3D structures are more fluid and amorphous than the solid structures pathologists have observed," Santangelo said. "The more we know about how RSV really looks, the more we’ll understand about its pathogenesis."

RSV is the most important cause of respiratory infection in young children worldwide, infecting virtually every child in the first few years of life. Immunity is feeble and fleeting, and repeated infections are the rule. One in every 100 or 200 infected infants requires hospitalization, usually for bronchiolitis. There is not yet an effective vaccine for RSV, and current anti-viral drugs are in their infancy in terms of efficacy, Santangelo noted.

Ultimately, researchers want to conduct in vivo testing, but must first adapt their molecular beacons technology for that purpose, Santangelo said. "In the nearer term, we hope to use molecular beacons to detect RSV in clinical samples like with those taken with a nasal swab. We might be able to detect RSV in its first day of incubation and make an early diagnosis,’’ he added.

The researchers also hope their research will lead to development of a suite of anti-viral drugs for treating RSV and other viruses, including human influenza.

Jane Sanders | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>