Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Molecular imaging may lead to earlier diagnosis of childhood respiratory virus

Scientists have used a powerful molecular imaging technique to see inside living cells infected with the most pervasive and potentially fatal childhood respiratory virus known to medicine -- respiratory syncytial virus (RSV).

The technique is yielding insight on viruses – such as RSV, human influenza, hepatitis C, West Nile virus and severe acute respiratory syndrome (SARS) -- that replicate with the help of proteins encoded by ribonucleic acid (RNA) inside the cell. Ultimately, the research could to lead to early and rapid detection of viral infection and the design of new antiviral drugs.

An epi-fluorescence microscopy image shows human RSV viral RNA in aggregates, called inclusion bodies, and in filament form, growing in green monkey kidney cells, using molecular-scale probes called molecular beacons molecular beacons. Credit: Image Courtesy of Phil Santangelo

Confocal microscopy images reveal the three-dimensional structure of bovine RSV viral RNA in living, infected bovine nasal cells using molecular-scale probes called molecular beacons. Credit: Image Courtesy of Phil Santangelo

Scientists and engineers at the Georgia Institute of Technology and the University of Georgia are studying bovine and human RSV with molecular-scale probes – called molecular beacons – that are engineered oligonucleotides (short sequences of RNA or DNA) shaped like a hairpin with a fluorescent dye molecule on one end and a quencher molecule on the other end. They are designed to fluoresce only when they bind to a complementary target – in this case, RSV genomic RNA.

"For the first time, we were able to visualize an important part of the RSV virus -- its genome -- in live, infected cells," said Phil Santangelo, a research engineer in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University. "Our molecular beacons attach to the virus and glow inside infected cells as the virus grows, replicates and infects other cells. We can now see that happen in real time in cultures in the lab.

"That’s very different from how scientists have studied viruses in past; they’ve looked at viruses in fixed (or preserved) cells," he added. "…. Within the first week of studying human RSV in living cells, I learned something new because I was looking at it live."

Molecular beacons were originally developed at the Public Health Research Institute in New Jersey in the late 1990s. They were initially used for in vitro assays outside cells. But Santangelo and former Georgia Tech Ph.D. student Nitin Nitin, now a postdoctoral researcher at Rice University, devised methods for getting the beacons inside the cell without destroying the probe and without changing the cells.

Santangelo will give an invited presentation on his research on April 20 at the Materials Research Society meeting in San Francisco. The research is funded under a National Institutes of Health grant to Professors Shuming Nie and Gang Bao – both in the Department of Biomedical Engineering at Georgia Tech and Emory -- to develop new, high-sensitivity live-cell probes. In this study, Santangelo, who works for Bao, collaborated with Amelia Woolums, an associate professor of large animal medicine at UGA.

They determined their molecular beacon techniques deliver high-sensitivity and high-specificity results in both bovine and human RSV strains. "The RSV genome is interesting in that it is 15,000 nucleotides long, and one of its RNA sequences repeats itself nine times," Santangelo explained. "So we were able to bind up to nine probes to that sequence, and that helped us achieve very high sensitivity to the virus. In the human virus, in fact, we were able to see a single RSV virion."

Also, researchers were able to detect virion aggregates in bovine RSV within the first day in culture, Santangelo noted. Typically, veterinarians cannot detect RSV until after five or six days of incubation.

Bovine RSV can be a major problem in cows, which represent a good animal model for human RSV. Calves have RSV symptoms similar to those in human babies, and the disease pathology is similar. So studying bovine RSV yields information about the strain that infects humans, he added. Also in this study, researchers used confocal microscopy to view very thin sections of the RSV viral genome in live, infected cells. This technique allowed them to reconstruct the viral RNA aggregates in three dimensions.

"Most pathologists look at thick sections of RSV in formaldehyde, but our 3D structures are more fluid and amorphous than the solid structures pathologists have observed," Santangelo said. "The more we know about how RSV really looks, the more we’ll understand about its pathogenesis."

RSV is the most important cause of respiratory infection in young children worldwide, infecting virtually every child in the first few years of life. Immunity is feeble and fleeting, and repeated infections are the rule. One in every 100 or 200 infected infants requires hospitalization, usually for bronchiolitis. There is not yet an effective vaccine for RSV, and current anti-viral drugs are in their infancy in terms of efficacy, Santangelo noted.

Ultimately, researchers want to conduct in vivo testing, but must first adapt their molecular beacons technology for that purpose, Santangelo said. "In the nearer term, we hope to use molecular beacons to detect RSV in clinical samples like with those taken with a nasal swab. We might be able to detect RSV in its first day of incubation and make an early diagnosis,’’ he added.

The researchers also hope their research will lead to development of a suite of anti-viral drugs for treating RSV and other viruses, including human influenza.

Jane Sanders | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>