Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover a new genetic cause of Alzheimer’s disease

20.04.2006
Researchers from the Flanders Interuniversity Institute for Biotechnology (VIB) connected to the University of Antwerp are the first to show that the quantity of amyloid protein in brain cells is a major risk factor for Alzheimer’s disease.
Amyloid protein has already been known to be the primary component of the senile plaques in the brains of patients. The new discovery demonstrates that the greater the quantity of the protein that is produced, the younger the dementia patient is.

Alzheimer’s disease

Alzheimer’s disease is a memory disorder that affects up to 70% of all dementia patients. In Belgium, about 100,000 people suffer from this disease. The disease gradually destroys brain cells in the deep areas of the brain that are responsible for memory and knowledge. Ever since the disease was first reported by Alois Alzheimer - 100 years ago now - scientists have been searching diligently for ways to treat it.

Amyloid plaque formation plays a key role

Genetic research has previously shown a direct connection between amyloid protein and the development of senile plaques and loss of cells. Amyloid protein originates when it is cut by enzymes from a larger precursor protein. In very rare cases (fewer than 1 in 1000 patients), mutations appear in that amyloid precursor protein, causing it to change shape and be cut differently. The amyloid protein that is formed now has different characteristics, causing it to begin to stick together and precipitate as amyloid plaques. The development of amyloid plaques in the brain tissue of Alzheimer patients is a central factor in the search for a therapy for Alzheimer’s disease.

A lot or not much of the amyloid precursor protein is a risk factor

The fact that patients with Down syndrome get Alzheimer’s disease shows that the quantity of the amyloid precursor protein contributes to the disease: in fact, patients with Down syndrome have 3 copies of the gene (or hereditary code) for the amyloid precursor protein and therefore produce 150% instead of 100% of the protein.

So, Jessie Theuns and her colleagues, under the direction of Christine Van Broeckhoven, hypothesized that the quantity of amyloid precursor protein might also play a role in Alzheimer’s disease. The geneticists from Antwerp systematically studied the hereditary code that is responsible for controlling the expression of the gene (= promoter). Biological processes in our body are strictly regulated, primarily by closely controlling the amount of each protein that is produced. The promoter of a gene has the most important control function in this process.

In younger Belgian and Dutch Alzheimer’s patients (younger than 70), the researchers found genetic variations in the promoter that increased the gene expression and thus the formation of the amyloid precursor protein. These variations in the promoter that increase expression occur up to 20 times more frequently (2 per 100 patients) than the mutations in the precursor protein that change the shape. Furthermore, there is a connection with the age at which the symptoms are first detected: the higher the expression (up to 150% as in Down syndrome), the younger the patient (starting between 50 and 60 years of age). Thus, the amount of amyloid precursor protein is a genetic risk factor for Alzheimer’s disease in the ageing process.

Prospects for tests and treatments

These new findings lead to a new understanding: namely, that the quantity of the amyloid precursor protein, and thus of the amyloid protein, in brain cells contributes significantly to the risk of contracting Alzheimer’s. This discovery will have to be taken into account in diagnostic tests and in the search for new medicines.

Sooike Stoops | alfa
Further information:
http://www.vib.be

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>