Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical guidance of T cells leads to immunologic memory and long-term immunity

19.04.2006
In the latest issue of the journal Nature, scientists at the National Institute of Allergy and Infectious Diseases (NIAID) of the National Institutes of Health (NIH) describe a new understanding about how long-term immunity works--findings that may lead to new ways of thinking about how to enhance certain immune responses and how to improve vaccines.

Led by immunologist Ronald Germain, M.D., Ph.D., the scientists took videos through a microscope to document what happens inside the lymph nodes of a living mouse shortly after a vaccination. The videos reveal that the movement of a specific type of immune cell known as a CD8+ T cell, also called a cytotoxic T cell, is not random as was previously thought, but instead is guided by chemical signals released from other cells.

Scientists have long recognized the importance of understanding how CD8+ T cells move through the lymph nodes and become activated. Once active, CD8+ T cells roam throughout the body destroying cells infected with bacteria or viruses--a process known as cell-mediated immunity. When these CD8+ T cells encounter an infected cell, they unleash a torrent of substances that poke holes in the cell’s membrane, chew up its proteins and ultimately cause it to die. They also produce molecules such as interferon-gamma that help activate other immune cells.

After they fight the initial infection, some of these CD8+ T cells remain in the circulation as memory cells, primed to fight if the host is re-infected with the same pathogen. Memory cells are key to vaccine strategies being studied for infectious agents such as HIV. But the CD8+ T cells can only become effective, long-lived memory cells after they encounter certain other cells in the lymph node that can activate them.

The new research, conducted largely by senior postdoctoral fellows Flora Castellino, M.D., and Alex Huang, M.D., Ph.D., with Dr. Germain’s guidance, shows that when CD8+ T cells enter the lymph node, a combination of specific physical and chemical cues guides them to sites where they receive activation signals. Specifically, two molecules known as chemokines help guide them toward the cells that release these activation signals.

"Understanding the processes whereby CD8+ T cells find their way in the lymph nodes is important because their activation is essential for eliminating infected cells and for providing, together with antibodies, long-lasting protection following vaccinations," says NIAID Director Anthony S. Fauci, M.D.

The body contains hundreds of millions of CD8+ T cells, but only a tiny fraction of them become activated during an infection. These are selected because each CD8+ T cell carries a unique surface protein called a T-cell receptor, which recognizes only specific antigens (pieces of virus or bacteria that trigger the immune response). During an infection, CD8+ T cells that recognize antigens from the infecting pathogen are activated. These antigen-specific CD8+ T cells expand into a large population of active clones, which then sweep through the body, hunting down and killing infected cells.

For CD8+ T-cell activation to occur in the lymph node, the cell must encounter its target antigen--but that antigen must be displayed on the surface of another immune system cell, called a dendritic cell. Usually a third type of cell, known as a "helper" T cell, must be involved as well. But how do the CD8+ T cells find the right dendritic cells presenting the specific antigen they need to see? Moreover, how do they find the particular dendritic cells that have been properly stimulated by helper T cells?

Dr. Germain and his colleagues determined that naïve CD8+ T cells do not wander aimlessly through the lymph node but instead are steered towards areas in which dendritic cells concentrate. Think of the lymph node as a large airport terminal and the CD8+ T cells as the arriving passengers, says Dr. Germain. If passengers know that limo drivers will meet them in the terminal, they will look for their drivers upon arrival. Rather than hoping to run into each other by chance, the drivers crowd around the arrival gates and hold up signs that the passengers can read from a distance.

Moreover, CD8+ T cells are chemically attracted to the cells that might activate them by the chemokines these other cells produce. Dr. Germain and his colleagues demonstrated that when CD8+ T cells enter the lymph nodes and detect a potential infection, they express receptors that allow them to detect and follow these chemokines.

The NIAID team also showed that when dendritic cells interact in specific fashion with helper T cells, the activated cell pair releases the chemokines CCL3 and CCL4. It is the combination of these two chemokines that the CD8+ T cells receive best as a signal, says Dr. Germain. By interfering with the action of these chemokines, he and his colleagues demonstrated that CD8+ T cells lost their ability to home in on the dendritic cells interacting with the helper T cells. The result was a marked impairment of memory cell generation.

These new findings not only provide insight into the fundamental behavior of the immune system, but also suggest that attention needs to be paid to chemokines and chemokine receptor function when designing new vaccine strategies and evaluating whether drugs targeting chemokines might have unanticipated effects on immune function.

Jason Socrates Bardi | EurekAlert!
Further information:
http://www.niaid.nih.gov

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>