Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insects that produce males from unfertilized eggs reveal a surprising cellular feat

19.04.2006
Scientists have long known that the social insects in the order Hymenoptera--which includes ants, bees, and wasps--have an unusual mechanism for sex determination: Unfertilized eggs develop into males, while fertilized eggs become females. But the development of an unfertilized egg into an adult (called parthenogenesis) remains a mysterious process.

One mystery has been the origin of the centrosome, an essential cellular component that is ordinarily derived from the sperm after fertilization. A new study led by researchers at the University of California, Santa Cruz, describes a remarkable process by which the egg cells of Hymenopteran insects make new centrosomes from scratch. The process involves enigmatic cellular structures called accessory nuclei, the function of which has not been explained since they were first discovered in the 1960s.

"Centrosomes arise from other centrosomes through duplication, but there is no centrosome in the egg that could give rise to new ones. We found that the accessory nuclei seed the formation of new centrosomes in unfertilized eggs," said Patrick Ferree, a graduate student in molecular, cell, and developmental biology at UCSC.

Ferree is first author of a paper describing the new findings in the April 18 issue of the journal Current Biology. Coauthor William Sullivan, professor of molecular, cell, and developmental biology at UCSC, said the findings have implications for understanding basic cell biology, the evolution of Hymenopteran insects, and centrosomal anomalies in cancer cells. The study also shows just how much remains to be discovered about the diversity of life at the cellular level, he said.

"You would think we’d have identified all the structures in the cell by now, but 90 percent of the material in cell biology textbooks comes from research on nine or ten organisms," Sullivan said. "Every time I look at a honeybee now, I think about these amazing structures they have, and it implies that among the millions of other species there must be cellular mechanisms we haven’t even imagined."

Centrosomes help orchestrate cell division, building an apparatus of microtubules called the mitotic spindle, which pulls apart the duplicated chromosomes so that each of the two daughter cells gets a complete set of chromosomes. The centrosome contains about a hundred different proteins, including the main protein for making microtubules, called gamma tubulin.

The UCSC researchers studied the development of centrosomes in the eggs of two parasitic wasps (Nasonia vitripennis and Muscidifurax uniraptor). Using fluorescently labeled antibodies that recognize and bind to gamma tubulin and other centrosomal proteins, they demonstrated the presence of these proteins in accessory nuclei and showed that the accessory nuclei appear to give rise to centrosomes.

Accessory nuclei bud off from the membrane of the nucleus, the cellular structure that contains the chromosomes. By the time the egg is fully developed, it contains several hundred accessory nuclei that look much like the nucleus except that they don’t contain chromosomes. Late in the development of the egg cell, the accessory nuclei disintegrate and centrosomes appear in the same locations in the cell.

"Right before the egg is laid, the membranes of the accessory nuclei break down, and at the same time the centrosomes begin to form," Ferree said.

One of the most striking aspects of this mechanism is the large number of accessory nuclei and centrosomes that form in the developing eggs of these Hymenopteran insects.

"You only need two centrosomes, and they make hundreds of them. So they go through a lot of work to make a male," Sullivan said. "A lot of energy goes into making these centrosomes, and if the egg gets fertilized they don’t use them--the centrosome from the sperm is used preferentially."

Centrosomes remain somewhat mysterious structures, Ferree said, but researchers may be able to learn more about them by purifying accessory vesicles and studying their protein components.

Accessory nuclei have been observed in other species besides Hymenopteran insects, and they may have other functions in addition to making centrosomes, he said. They may also hold clues to the evolutionary origin of the Hymenoptera. Because the males of these insects develop from unfertilized eggs, they have half the number of chromosomes that females have--in technical terms, the males are haploid and the females are diploid.

This situation, known as haplodiploidy, results in interesting genetic relationships that are thought to underlie the complex social behavior of Hymenopteran insects. One of the key steps in the evolution of social insects, therefore, may have been the development of a mechanism for making centrosomes from scratch.

"The Hymenoptera were probably derived from a species that had accessory nuclei, and in the evolution of haplodiploidy the accessory nuclei were co-opted as a way of building centrosomes," Sullivan said.

Tim Stephens | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>