Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MUHC researcher links self-defeating gene to lethal infections

19.04.2006
Caspase-12 is a molecule with a death-wish. Found only in people of African descent, this protein shuts down our body’s immune system, opening the door to potentially lethal infections. In a groundbreaking new study published in the prestigious journal Nature this week, the team that first discovered the role of caspase-12 in humans has now uncovered the mechanism by which it sabotages us, allowing researchers to develop methods to counter its damaging effects.

Caspase-12 is found in around 20% of people of African descent, but was entirely lost from all other ethnicities around 60,000 years ago. "It’s a mystery why only African populations retained this enzyme," says Dr. Maya Saleh, a medical scientist in the Critical Care Division at the MUHC and assistant professor in the Department of Medicine at McGill University. "It’s possible that in Africa the protein could once have had a protective function fighting autoimmune diseases or perhaps parasites, like malaria; today caspase-12 provides no benefit to those who carry it, and often leaves the body more vulnerable to life-threatening infections and sepsis (’septic shock’). "Only by investigating the mechanisms by which caspase-12 works can we hope to inhibit its destructive effects," says Dr. Saleh.

Dr. Saleh and a research team from Merck and the La Jolla Institute for Allergy and Immunology in San Diego conducted laboratory experiments using mice deficient in the caspase-12 gene. "We discovered that caspase-12 blocks the body’s inflammatory response to infection by blocking the activity of another useful enzyme," says Dr. Saleh. "It’s kind of like the bad leading the good astray." Dr. Saleh’s discovery is a major step forward and will allow researchers to develop treatments that may help strengthen the immune system of those people unfortunate enough to have the caspase-12 gene product.

This research was funded by a fellowship from the Canadian Institutes for Health Research (CIHR), the MUHC and McGill University to Dr. Saleh.

The Research Institute of the McGill University Health Centre (RI MUHC) is a world-renowned biomedical and health-care hospital research centre. Located in Montreal, Quebec, the institute is the research arm of the MUHC, a university health center affiliated with the Faculty of Medicine at McGill University. The institute supports over 500 researchers, nearly 1000 graduate and post-doctoral students and operates more than 300 laboratories devoted to a broad spectrum of fundamental and clinical research. The Research Institute operates at the forefront of knowledge, innovation and technology and is inextricably linked to the clinical programs of the MUHC, ensuring that patients benefit directly from the latest research-based knowledge. For further details visit: www.muhc.ca/research.

The McGill University Health Centre (MUHC) is a comprehensive academic health institution with an international reputation for excellence in clinical programs, research and teaching. The MUHC is a merger of five teaching hospitals affiliated with the Faculty of Medicine at McGill University--the Montreal Children’s, Montreal General, Royal Victoria, and Montreal Neurological Hospitals, as well as the Montreal Chest Institute. Building on the tradition of medical leadership of the founding hospitals, the goal of the MUHC is to provide patient care based on the most advanced knowledge in the health care field, and to contribute to the development of new knowledge.

Ian Popple | MUHC
Further information:
http://www.muhc.ca

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>