Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


How the octopus forms an elbow

Human-like movement control helps flexible arms achieve precision

The octopus arm is extremely flexible. Thanks to this flexibility--the arm is said to possess a virtually infinite number of "degrees of freedom"--the octopus is able to generate a vast repertoire of movements that is unmatched by the human arm. Nonetheless, despite the huge evolutionary gap and morphological differences between the octopus and vertebrates, the octopus arm acts much like a three-jointed vertebrate limb when the octopus performs precise point-to-point movements. Researchers have now illuminated how octopus arms are able to form joint-like structures, and how the movements of these joints are controlled.

The flexible arm of the octopus has virtually an infinite number of degrees of freedom, allowing a repertoire of movements unmatched by even the human arm.

The new findings, which appear in the April 18th issue of Current Biology, are reported by Tamar Flash of the Weizmann Institute of Science, Binyamin Hochner and German Sumbre of Hebrew University, and Graziano Fiorito of the Stazione Zoologica di Napoli.

The extreme motility of the octopus arm demands a highly complex motor control system. Past work from Dr. Hochner’s group showed that when retrieving food to its mouth, the octopus actually shapes its arm into a quasi-articulated structure by forming three bends that act like skeletal joints. This puts an artificial constraint of sorts on the arm’s movement and simplifies the otherwise complex control of movement that would be needed for the arm to fetch food from a distant point to the octopus’s mouth.

In the new work, the researchers sought to identify how the octopus manages to transform its extremely flexible arm into a structure that acts like a jointed appendage. By recording muscle activity as the arm creates the joint-like bends, the researchers found that the arm generates two waves of muscle contraction that propagate toward each other, setting the second, or medial, joint at their collision point. This is a remarkably simple mechanism for adjusting the length of the arm segments according to where the object is grasped along the arm. The arm also forms a proximal joint near where the arm meets the body, and a distal joint near the suckers that have grasped the food. The medial joint typically exhibits the most movement during food retrieval.

The authors also found evidence that, like certain types of human arm movements, octopus fetching movements are controlled in terms of joint angles, rather than by a system that relies on the brain’s coordinate-based map of external space.

The presence of similar structural features and control strategies in articulated limbs (for example, jointed vertebrate arms) and flexible octopus arms suggests that these qualities have evolved convergently in octopuses and in vertebrates, and it also suggests that an articulated limb--controlled at the level of joints--is the optimal solution to the challenge of achieving precise point-to-point movements by a limb.

Heidi Hardman | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Molecular doorstop could be key to new tuberculosis drugs
20.03.2018 | Rockefeller University

nachricht Modified biomaterials self-assemble on temperature cues
20.03.2018 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Earlier flowering of modern winter wheat cultivars

20.03.2018 | Agricultural and Forestry Science

Smithsonian researchers name new ocean zone: The rariphotic

20.03.2018 | Life Sciences

Molecular doorstop could be key to new tuberculosis drugs

20.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>