Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Interstellar Chemical Tamed in The Lab at UCR

18.04.2006
A triangular molecule, resembling an abundant product detected in outer space, may one day find important applications on planet Earth.

Chemists at the University of California, Riverside have created in the laboratory a type of molecule thought to exist only in interstellar space, which may have valuable applications in the chemical industry.


Interstellar molecules in a bottle at UCR

The finding of their paper, titled Cyclopropenylidenes: From Interstellar Space to an Isolated Derivative in the Laboratory are being released today in Science Express a precursor to its publication in the journal Science. The co-authors are Vincent Lavallo, Yves Canac and Bruno Donnadieu who work in the laboratory of Distinguished Professor of Chemistry Guy Bertrand at UCR; and Chemistry Professor Wolfgang W. Schoeller of Germany’s Universität Bielefeld.

“This is about a compound that is very abundant in deep space, which was supposed to not be able to exist in the laboratory, and we found a way to slightly modify it and make it stable,” said Bertrand.

The new molecule belongs to a family of compounds known as carbenes, very few of which are stable. However, carbenes are now widely used to prepare catalysts that have many applications in industries such as pharmaceuticals, plastics and other petrochemicals. The cyclopropenylidene that exists naturally in space is made of three carbon atoms arranged in a triangle with two hydrogen atoms attached. The UCR researchers synthesized a more stable version by replacing the hydrogen with two nitrogen atoms. Because of its unique shape and size, the new carbene prepared at UCR might lead to even more powerful catalysts.

“We purposely targeted this molecule,” said Lavallo, a first-year graduate student in Chemistry and the paper’s lead author. “I was intrigued by some of the older literature regarding this class of molecules, which indicated that they were too reactive to be isolated, and decided to see if it was true.”

“Everyday, scientists realize the usefulness of natural products, which exist on planet Earth, for pharmaceuticals, materials... Why not believe that molecules, which exist in space possess interesting and of course yet unknown properties?” Bertrand said.

The University of California, Riverside is a major research institution. Key areas of research include nanotechnology, genomics, environmental studies, digital arts and sustainable growth and development. With a current undergraduate and graduate enrollment of more than 16,600, the campus is projected to grow to 21,000 students by 2010. Located in the heart of Inland Southern California, the nearly 1,200-acre, park-like campus is at the center of the region’s economic development. Visit www.ucr.edu or call 951-UCR-NEWS for more information.

Ricardo Duran | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>