Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers of the UGR analyse tumours in depth using mathematical equations

A group of researchers of the University of Granada (UGR) is leading an excellence project funded by the Andalusian Ministry of Innovation, Science and Enterprise with 105,900 Euros whose objective is to apply mathematics to the study of tumours and cell mobility.

With their project called ‘Biomat: estudio de modelos de desarrollo y movilidad celular y tumoral’ (Biomat: study of models of cell and tumour development and mobility), these Granada-based scientists, led by Juan Soler Vizcaíno, will analyse cell mobility and tumour growth from the interaction of testing and mathematical models. This research is conducted in the Biomathematics field, a priority area of Biotechnology where Biology, Physics, Mathematics and Medicine converge.

Scientists believe that there is a link that is common to all the problems that have risen in the project kinetic theory. In a great number of biological particles that interact among themselves there is an underlying mathematical structure that is supported by equations on non-lineal partial derivatives. These systems are interrelated and, in certain cases, describe the same phenomenon depending on the observation scale that is used.

With this theory, scientists will carry out a study and modelling by means of kinetic equations of cell movement which introduce different phenomenologies such as concentration of chemical substances or intercellular interaction, among others. Also, they will make a comparative analysis of tumour models based on the superficial spreading on the edge that takes new tumour cells to places with more free space for their growth.

The social relevance of the project ‘is unquestionable, like the social repercussion that any issue related to cancer has’, Juan Soler said to Andalucía Investiga. ‘It is also a competitive project that gives a great opportunity to share this initiative with Andalusia, or even the leadership, in such promising field’.

In addition to this, the Granada-based team will study the fragmentation and coagulation of biological particles, related to global ecology and the formation of nutrients.

A great work framework
According to the experts, Biomat’s first objective is to create a work framework on Biomathematics that becomes an international scientific referent. In order to do so, Biomat will train interdisciplinary teams (doctors, biologists, mathematicians and physicists), as well as pre-doctoral and postdoctoral students. The second goal is to establish a parallel Master, PhD and summer school teaching program, where they already have some experience (like Escuela Biomat), so as to train top researchers.

As far as Biomathematics is concerned, the work lines require top quality criteria to be applied to all the fields involved. It is only this way that the results can be validated by the corresponding scientific communities. Juan Soler also said to Andalucía Investiga that promoting excellence research from a multidisciplinary viewpoint is ‘a possible fascinating challenge, intellectually profitable and important for young researchers’ curriculum, as well as internationally fashionable’.

Ismael Gaona | alfa
Further information:

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>