Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers of the UGR analyse tumours in depth using mathematical equations

18.04.2006
A group of researchers of the University of Granada (UGR) is leading an excellence project funded by the Andalusian Ministry of Innovation, Science and Enterprise with 105,900 Euros whose objective is to apply mathematics to the study of tumours and cell mobility.

With their project called ‘Biomat: estudio de modelos de desarrollo y movilidad celular y tumoral’ (Biomat: study of models of cell and tumour development and mobility), these Granada-based scientists, led by Juan Soler Vizcaíno, will analyse cell mobility and tumour growth from the interaction of testing and mathematical models. This research is conducted in the Biomathematics field, a priority area of Biotechnology where Biology, Physics, Mathematics and Medicine converge.

Scientists believe that there is a link that is common to all the problems that have risen in the project kinetic theory. In a great number of biological particles that interact among themselves there is an underlying mathematical structure that is supported by equations on non-lineal partial derivatives. These systems are interrelated and, in certain cases, describe the same phenomenon depending on the observation scale that is used.

With this theory, scientists will carry out a study and modelling by means of kinetic equations of cell movement which introduce different phenomenologies such as concentration of chemical substances or intercellular interaction, among others. Also, they will make a comparative analysis of tumour models based on the superficial spreading on the edge that takes new tumour cells to places with more free space for their growth.

The social relevance of the project ‘is unquestionable, like the social repercussion that any issue related to cancer has’, Juan Soler said to Andalucía Investiga. ‘It is also a competitive project that gives a great opportunity to share this initiative with Andalusia, or even the leadership, in such promising field’.

In addition to this, the Granada-based team will study the fragmentation and coagulation of biological particles, related to global ecology and the formation of nutrients.

A great work framework
According to the experts, Biomat’s first objective is to create a work framework on Biomathematics that becomes an international scientific referent. In order to do so, Biomat will train interdisciplinary teams (doctors, biologists, mathematicians and physicists), as well as pre-doctoral and postdoctoral students. The second goal is to establish a parallel Master, PhD and summer school teaching program, where they already have some experience (like Escuela Biomat), so as to train top researchers.

As far as Biomathematics is concerned, the work lines require top quality criteria to be applied to all the fields involved. It is only this way that the results can be validated by the corresponding scientific communities. Juan Soler also said to Andalucía Investiga that promoting excellence research from a multidisciplinary viewpoint is ‘a possible fascinating challenge, intellectually profitable and important for young researchers’ curriculum, as well as internationally fashionable’.

Ismael Gaona | alfa
Further information:
http://www.andaluciainvestiga.com/previsNotaPrensa.asp?idioma=2&idNota=329

More articles from Life Sciences:

nachricht New technique unveils 'matrix' inside tissues and tumors
29.06.2017 | University of Copenhagen The Faculty of Health and Medical Sciences

nachricht Designed proteins to treat muscular dystrophy
29.06.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>