Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High efficiency flat light source invented

13.04.2006
Tired of fluorescent tubes? Imagine your ceiling -- or any surface -- as a giant light panel, thanks to research from the University of Southern California and Princeton University

Scientists studying organic light-emitting devices (OLEDs) have made a critical leap from single-color displays to a highly efficient and long-lived natural light source.

The invention, described in the April 13 issue of Nature, is the latest fruit of a 13-year OLED research program led by Mark Thompson, professor of chemistry in the USC College of Letters, Arts and Sciences, and Stephen Forrest, formerly of Princeton University and now vice president for research at the University of Michigan.

"This process will enable us to get 100 percent efficiency out of a single, broad spectrum light source," Thompson said.

If the device can be mass-manufactured cheaply - a realistic expectation, according to Thompson - interior lighting could look vastly different in the future. Almost any surface in a home, whether flat or curved, could become a light source: walls, curtains, ceilings, cabinets or tables.

Since OLEDs are transparent when turned off, the devices could even be installed as windows or skylights to mimic the feel of natural light after dark - or to serve as the ultimate inconspicuous flat-panel television.

Thompson and Forrest previously invented efficient single- color displays now ready to enter the market in next-generation cell phones. But subsequent attempts by several groups to create white-light OLEDs fell short. The biggest issue was the fast burnout time of the blue component, since blue is one of the primary colors needed to make white.

The Nature paper presents a quantum mechanical trick that solves this problem. First, the researchers followed their standard recipe for making an OLED: placing four ultra-thin organic layers on glass or transparent plastic. Three of the layers serve as highways for charges to reach a central "emissive" layer.

When the oppositely charged molecules meet in the emissive layer, electrons jump from the negatively charged molecules to the positive ones, and ultimately relax to their starting energy. In the process, light is emitted, which can be tuned to cover a broad range of wavelengths.

Previous OLEDs used phosphorescent blue, green and red dyes to generate light with greater energy efficiency than all-fluorescence based devices (phosphorescence and fluorescence, both expressions of energy that is released as excited electrons fall back into their regular orbit, differ mainly in the speed of their response).

Thompson and Forrest found that they could substitute a fluorescent dye for blue without sacrificing the superior properties of OLEDs.

In fact, the researchers reported, the fluorescent dye should prolong the lifetime of the blue component and also uses 20 percent less energy.

"We’re hoping this will lead to significantly longer device lifetimes in addition to higher efficiency," Thompson said.

According to Forrest, the device eventually could achieve three times the efficiency of standard incandescent light bulbs.

"With a future emphasis on manufacturing technology, this structure may provide an important, low-cost and efficient means that will replace incandescent lighting in many different applications," Forrest wrote.

The tallest remaining hurdle to production of these devices may have nothing to do with the OLED itself, Thompson said, but with the plastic layer to be used as a backing in economical large-area devices. All mass-produced plastics allow some humidity to pass through to the OLED, eventually degrading it.

"There’s no plastic that’s hermetic enough to make devices that will last a long period," Thompson said, while predicting that this problem can be solved. Already, Universal Display Corp. has developed the group’s research into a commercially feasible process for making cell phone screens.

Carl Marziali | EurekAlert!
Further information:
http://www.usc.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>