Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Targeted drug delivery now possible with ’pHLIP’ peptide

13.04.2006
Scientists at Yale and the University of Rhode Island report the development of a peptide that can specifically and directly deliver molecules to the inside of cells like a nanosyringe, creating a new tool for drug delivery, gene control and imaging of diseased tissues.

Their "cargo carrier" peptide called pHLIP, for pH (Low) Insertion Peptide, accumulates in the membranes of cells in acidic environments and spontaneously transfers attached molecules across the membrane. The cargo is then released by cleavage of a sulfur-sulfur bond that is only unstable if it is inside the cell. The study, published early online in the Proceedings of the National Academy of Sciences, was led by Donald M. Engelman, professor of molecular biophysics and biochemistry at Yale.


The delivery of fluorescent phalloidin into cells by pHLIP. (a) HeLa cells at pH 7.4 (Left) shows weak label localized at the cell membrane, and pH 6.5 (Right) shows fluorescent actin filaments inside cells. (b) HeLa (Left), breast cancer (Center), and prostate cancer (Right) cells show different and characteristic patterns of fluorescent actin filaments. Credit: Credit: Yale University

"Our system offers a new technology for the fast and efficient delivery of drugs, imaging probes, or cell and gene regulation agents into living cells," said Engelman. "pHLIP may provide a new approach for imaging, diagnosis and treatment of diseases with naturally occurring or artificially created low-pH extracellular environments, such as tumors, infarcts, stroke-afflicted tissue, atherosclerotic lesions, sites of inflammation or infection, or damaged tissue resulting from trauma."

Normal cells are surrounded by an environment with a constant pH of about 7.4, while tumor cells and sites of inflammation actively pump protons out and create an acid extracellular pH of 5.5 to 6.5.

The study shows that pHLIP entry into the cell membrane and the translocation of molecules into cells are not mediated by the usual entry pathways -- endocytosis, interactions with cell receptors, or by formation of pores in cell membranes.

"By translocating a molecule into a cell and releasing it in the cytoplasm, pHLIP functions, in effect, as a nanosyringe," according to Engelman. "The peptide does not exhibit any of this structure in solution or on the cell membrane at neutral pH. However, at low pH it becomes rigid like a syringe needle, inserts into a cell membrane, and injects molecules into cells.

Drug or dye molecules can be linked by sulfur-sulfur bonds to pHLIP. This paper demonstrates the effectiveness of pHLIP with a cargo of fluorescently tagged phalloidin, a toxin from the deadly Amanita phalloides mushroom that normally cannot enter cells. Inside the cells phalloidin binds to actin molecules and "freezes" the cellular skeleton giving a distinct visual pattern under the microscope.

Janet Rettig Emanuel | EurekAlert!
Further information:
http://www.yale.edu
http://www.yale.edu/ocr/

More articles from Life Sciences:

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Camera on NASA's Lunar Orbiter survived 2014 meteoroid hit

29.05.2017 | Physics and Astronomy

Strathclyde-led research develops world's highest gain high-power laser amplifier

29.05.2017 | Physics and Astronomy

A 3-D look at the 2015 El Niño

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>