Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Targeted drug delivery now possible with ’pHLIP’ peptide

13.04.2006
Scientists at Yale and the University of Rhode Island report the development of a peptide that can specifically and directly deliver molecules to the inside of cells like a nanosyringe, creating a new tool for drug delivery, gene control and imaging of diseased tissues.

Their "cargo carrier" peptide called pHLIP, for pH (Low) Insertion Peptide, accumulates in the membranes of cells in acidic environments and spontaneously transfers attached molecules across the membrane. The cargo is then released by cleavage of a sulfur-sulfur bond that is only unstable if it is inside the cell. The study, published early online in the Proceedings of the National Academy of Sciences, was led by Donald M. Engelman, professor of molecular biophysics and biochemistry at Yale.


The delivery of fluorescent phalloidin into cells by pHLIP. (a) HeLa cells at pH 7.4 (Left) shows weak label localized at the cell membrane, and pH 6.5 (Right) shows fluorescent actin filaments inside cells. (b) HeLa (Left), breast cancer (Center), and prostate cancer (Right) cells show different and characteristic patterns of fluorescent actin filaments. Credit: Credit: Yale University

"Our system offers a new technology for the fast and efficient delivery of drugs, imaging probes, or cell and gene regulation agents into living cells," said Engelman. "pHLIP may provide a new approach for imaging, diagnosis and treatment of diseases with naturally occurring or artificially created low-pH extracellular environments, such as tumors, infarcts, stroke-afflicted tissue, atherosclerotic lesions, sites of inflammation or infection, or damaged tissue resulting from trauma."

Normal cells are surrounded by an environment with a constant pH of about 7.4, while tumor cells and sites of inflammation actively pump protons out and create an acid extracellular pH of 5.5 to 6.5.

The study shows that pHLIP entry into the cell membrane and the translocation of molecules into cells are not mediated by the usual entry pathways -- endocytosis, interactions with cell receptors, or by formation of pores in cell membranes.

"By translocating a molecule into a cell and releasing it in the cytoplasm, pHLIP functions, in effect, as a nanosyringe," according to Engelman. "The peptide does not exhibit any of this structure in solution or on the cell membrane at neutral pH. However, at low pH it becomes rigid like a syringe needle, inserts into a cell membrane, and injects molecules into cells.

Drug or dye molecules can be linked by sulfur-sulfur bonds to pHLIP. This paper demonstrates the effectiveness of pHLIP with a cargo of fluorescently tagged phalloidin, a toxin from the deadly Amanita phalloides mushroom that normally cannot enter cells. Inside the cells phalloidin binds to actin molecules and "freezes" the cellular skeleton giving a distinct visual pattern under the microscope.

Janet Rettig Emanuel | EurekAlert!
Further information:
http://www.yale.edu
http://www.yale.edu/ocr/

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>