Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diabetes and Cancer: Alpha Connection

13.04.2006
A study published by Nature today has defined the function of p110 alpha, the flag-ship molecule of the eight member PI3K family, which is one of the most frequently activated pathways in cancer. The function of p110 alpha in the body has eluded researchers for over a decade but a new approach to generating mouse models, has allowed investigators from the Ludwig Institute for Cancer Research’s (LICR) UCL Branch and the UCL Centre for Diabetes & Endocrinology to solve the mystery and yield important information for planned clinical trials with PI3K inhibitors.

The study showed that p110 alpha controls the action of insulin and other key hormonal signals that play roles in growth, diabetes and obesity. p110 alpha is frequently mutated or overexpressed in cancer, and the results of the present work imply that cancer cells hijack a key signalling pathway to fuel their energy needs and drive their proliferation and survival. The current work has far-reaching implications, given that several million of people are affected by metabolic disorders, and every year, several hundreds of thousand new cancer cases with mutations in p110 alpha are diagnosed.

Importantly, says LICR’s Dr. Bart Vanhaesebroeck, the senior author of the study, the findings have immediate implications for the testing of p110 alpha-specific inhibitors for human therapies. “Accurate information on the specific role of p110 alpha is needed urgently by the pharmaceutical industry, which is preparing to initiate clinical trials based on PI3K inhibition, not only in cancer but also in inflammation, allergy and auto-immunity. These mice mimic the effect of systemic administration with a p110 alpha-specific drug,”

According to Dr. Vanhaesebroeck, traditional mouse models investigating the function of PI3K proteins have been engineered to completely remove the p110 alpha gene. However the LICR and University College London team and collaborators from the Universities of Edinburgh and Fribourg introduced a single mutation into the p110 alpha gene that inactivates, but does not remove, the protein. The scientists discovered that the mice were smaller, but ate more and had increased levels of body fat. Additionally, the mice had raised insulin levels and were glucose-intolerant. However, the mice did not go on to develop full diabetes. “The finding that these mice, despite having dampened insulin signalling, showed no signs of developing diabetes, is welcome news, as this suggest that drugs that block p110 alpha function in cancer cells may not have the severe metabolic disturbances first expected.”

For Dr. Dominic Withers from the UCL Centre for Diabetes & Endocrinology, a senior co-author on the study, this work adds another important part to solving the puzzle of how insulin works. “In order to be able to treat diabetes and other metabolic disorders, such as obesity, we first have to understand the normal regulation of this complex system, so that therapies are targeted at the key players in this pathway.”

Sarah L. White, PhD | alfa
Further information:
http://www.licr.org
http://www.licr.org/C_news/archive.php/2006/04/12/diabetes-and-cancer/

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Climate change: In their old age, trees still accumulate large quantities of carbon

17.08.2017 | Earth Sciences

Modern genetic sequencing tools give clearer picture of how corals are related

17.08.2017 | Life Sciences

Superconductivity research reveals potential new state of matter

17.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>