Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diabetes and Cancer: Alpha Connection

13.04.2006
A study published by Nature today has defined the function of p110 alpha, the flag-ship molecule of the eight member PI3K family, which is one of the most frequently activated pathways in cancer. The function of p110 alpha in the body has eluded researchers for over a decade but a new approach to generating mouse models, has allowed investigators from the Ludwig Institute for Cancer Research’s (LICR) UCL Branch and the UCL Centre for Diabetes & Endocrinology to solve the mystery and yield important information for planned clinical trials with PI3K inhibitors.

The study showed that p110 alpha controls the action of insulin and other key hormonal signals that play roles in growth, diabetes and obesity. p110 alpha is frequently mutated or overexpressed in cancer, and the results of the present work imply that cancer cells hijack a key signalling pathway to fuel their energy needs and drive their proliferation and survival. The current work has far-reaching implications, given that several million of people are affected by metabolic disorders, and every year, several hundreds of thousand new cancer cases with mutations in p110 alpha are diagnosed.

Importantly, says LICR’s Dr. Bart Vanhaesebroeck, the senior author of the study, the findings have immediate implications for the testing of p110 alpha-specific inhibitors for human therapies. “Accurate information on the specific role of p110 alpha is needed urgently by the pharmaceutical industry, which is preparing to initiate clinical trials based on PI3K inhibition, not only in cancer but also in inflammation, allergy and auto-immunity. These mice mimic the effect of systemic administration with a p110 alpha-specific drug,”

According to Dr. Vanhaesebroeck, traditional mouse models investigating the function of PI3K proteins have been engineered to completely remove the p110 alpha gene. However the LICR and University College London team and collaborators from the Universities of Edinburgh and Fribourg introduced a single mutation into the p110 alpha gene that inactivates, but does not remove, the protein. The scientists discovered that the mice were smaller, but ate more and had increased levels of body fat. Additionally, the mice had raised insulin levels and were glucose-intolerant. However, the mice did not go on to develop full diabetes. “The finding that these mice, despite having dampened insulin signalling, showed no signs of developing diabetes, is welcome news, as this suggest that drugs that block p110 alpha function in cancer cells may not have the severe metabolic disturbances first expected.”

For Dr. Dominic Withers from the UCL Centre for Diabetes & Endocrinology, a senior co-author on the study, this work adds another important part to solving the puzzle of how insulin works. “In order to be able to treat diabetes and other metabolic disorders, such as obesity, we first have to understand the normal regulation of this complex system, so that therapies are targeted at the key players in this pathway.”

Sarah L. White, PhD | alfa
Further information:
http://www.licr.org
http://www.licr.org/C_news/archive.php/2006/04/12/diabetes-and-cancer/

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>