Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Altering genetic blueprint of receptors in brain could help stroke victims avoid brain damage

12.04.2006
A University of Central Florida researcher has demonstrated that altering AMPA receptors in animals improved their chances of surviving strokes and remaining healthier afterwards.

A University of Central Florida researcher has discovered that altering a receptor that mediates communication between nerve cells in the brain significantly improves animals’ chances of surviving strokes and allows them to remain healthier afterwards.

YouMing Lu, a professor at the UCF Burnett College of Biomedical Sciences, is hopeful that changing the genetic blueprint of AMPA receptors can help to block lethal flows of calcium into neurons of human stroke victims.

If administered within a few hours of cardiac arrest, such therapies could prevent brain damage. Given later, the therapies could speed up the regeneration of neurons to replace ones killed by the stroke. In both cases, the primary goal is to help patients avoid brain injuries after strokes.

AMPA receptors that are located at the surface of nerve cells are normally responsible for learning and memory formation. During strokes, however, the receptors become toxic to nerve cells.

"We’re trying to find out what the major toxic aspects of these receptors are so we can rescue neurons without damaging learning and memory formation," Lu said.

Lu’s research was published in the March 2 issue of Neuron, a prestigious biomedical research journal. Lu and his research team at UCF and the University of Calgary are trying to determine the molecular functions that lead to receptors opening up and enabling large, lethal flows of calcium to reach neurons after strokes.

The calcium flows occur in the hippocampus of the brain, an area that is critical for learning and memory processes. The dilemma for researchers is to figure out how to protect neurons from the lethal doses of calcium without causing more damage to learning and memory.

Lu’s approach of modifying one part of the genetic blueprint of the AMPA receptor protected the brain in tests with mice and rats, which experience the same pattern of brain damage after cardiac arrest as humans do, Lu said. More tests in animals would be done before clinical trials are conducted.

Lu conducted his research with funds from the American Heart Association, plus other grants from the UCF presidential equipment fund, the Heart and Stroke Foundation of Canada and the Canadian Institute for Health Research. Lu’s research has potential future applications for Alzheimer’s disease and other neurological illnesses. Drug therapies for those diseases also could improve learning and memory by inducing the regeneration of neurons.

Lu began his research about six years ago at the University of Calgary. He moved to the University of Central Florida 1 1/2 years ago, when the university began hiring more faculty members in the Burnett College of Biomedical Sciences to develop a foundation for a new medical college at UCF.

Chad Binette | EurekAlert!
Further information:
http://www.ucf.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>