Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover new genetic subtypes of common blood cancer

11.04.2006
Varied gene signatures in multiple myeloma cells predict different outcomes, provide treatment targets

Scientists at Dana-Farber Cancer Institute and collaborators have identified four distinct genetic subtypes of multiple myeloma, a deadly blood cancer, that have different prognoses and might be treated most effectively with drugs specifically targeted to those subtypes.

A new computational tool based on an algorithm designed to recognize human faces plucked the four distinguishing gene patterns out of a landscape of many DNA alterations in the myeloma genome, the researchers report in the April issue of Cancer Cell.

These results "define new disease subgroups of multiple myeloma that can be correlated with different clinical outcomes," wrote the authors, led by Ronald DePinho, MD, director of Dana-Farber’s Center for Applied Cancer Science.

Not only do the findings pave the way for treatments tailored to a patient’s specific form of the disease, they also narrow down areas of the chromosomes in myeloma cells likely to contain undiscovered genetic flaws that drive myeloma, and which might turn out to be vulnerable to targeted designer drugs.

Kenneth Anderson, MD, medical director of the Jerome Lipper Multiple Myeloma Center at Dana-Farber and an author of the paper, said the findings "allow us to predict how patients will respond to current treatments based on a genetic analysis of their disease." In addition, the findings "identify many new genes implicated in the cause and progression of myeloma, and the product of those genes can be targeted with novel therapies."

Multiple myeloma, the second most common blood cancer after non-Hodgkin’s lymphoma, is incurable, although some patients live for a number of years following diagnosis. About 50,000 people in the United States are living with the disease, and an estimated 16,000 new cases are diagnosed annually. Despite improvements in therapy, the five-year survival rate in multiple myeloma is only 32 percent and durable responses are rare.

The new report emerged from a collaboration involving DePinho’s Dana-Farber group, Cameron Brennan, MD, of Memorial Sloan-Kettering Cancer Center, and John Shaughnessy, MD, of the Myeloma Institute for Research and Therapy at the University of Arkansas for Medical Sciences. Lead authors are Daniel Carrasco, MD, PhD, and Giovanni Tonon, MD, PhD, of Dana-Farber, and Yongsheng Huang, MS, of the Myeloma Institute for Research and Therapy at the University of Arkansas for Medical Science.

Myeloma cells’ genomes are scenes of rampant chaos: extra or missing chromosomes; pieces of broken chromosomes randomly reattached; genes that are mutated or amplified – present in too many copies – or are overexpressed or absent. The roles played by these myriad abnormalities in the initiation and progression of myeloma are only beginning to be understood, but it’s been observed that different abnormalities are often found from one patient to the next.

Previously, scientists had identified two genetic subtypes of myeloma. One, called hyperdiploid MM, is characterized by extra copies of entire chromosomes, and patients with this subtype appear to fare better. The non-hyperdiploid form lacks these extra chromosomes and instead has abnormal rearrangements between different chromosomes, and the outlook is generally worse for these patients.

The collaborating researchers sought to cast a wide net to capture as many of the genetic flaws in myeloma cells as possible, creating a comprehensive atlas of this cancerous genome. First, they used a technique called high-resolution array CGH (comparative genomic hybridization) to analyze samples from 67 newly diagnosed patients provided by Shaughnessy in Arkansas. The CGH technique compared the genomes of a normal blood cell with various myeloma cells in search of differences. The goal was to identify recurrent copy number alterations – hotspots on the chromosomes where genes were abnormally duplicated or lost across many different tumors.

The CGH analysis netted a large number of areas showing such alterations in the myeloma cells from patients. Then the scientists asked whether any specific pattern or combination of these aberrations in an individual patient might help predict how aggressive the disease would be.

For this deeper analysis, the researchers created an algorithm based on a recently developed computational method designed to recognize individuals by facial features. It is called non-negative matrix factorization, or NMF. In the myeloma study, the algorithm was used to group the results in a way that yielded distinctive genomic features from the CGH data.

Four distinct myeloma subtypes based on genetic patterns emerged: Two of them corresponded to the non-hyperdiploid and hyperdiploid types, and the latter was found to contain two further subdivisions, called k1 and k2 When these subgroups were checked against the records of the patients from whom the samples were taken, it showed that those with the k1 pattern had a longer survival than those with k2. Digging still deeper, the scientists found evidence suggesting that certain molecular signatures within the subgroups are responsible for the differences in outcomes, providing a clear and productive path for further research.

This narrowing down of potential genes and proteins within the subgroups "is a huge advance," comments DePinho. "If you know that a certain gene is driving the disease and influences the clinical behavior of the disease in humans, it immediately goes to the top of the list as a prime candidate for drug development."

Bill Schaller | EurekAlert!
Further information:
http://www.danafarber.org

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>