Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


MIT, Brigham: Nanoparticles armed to combat cancer

Ultra-small particles loaded with medicine

Ultra-small particles loaded with medicine - and aimed with the precision of a rifle - are offering a promising new way to strike at cancer, according to researchers working at MIT and Brigham and Women’s Hospital.

In a paper to appear the week of April 10 in the online edition of the Proceedings of the National Academy of Sciences, the team reports a way to custom design nanoparticles so they home in on dangerous cancer cells, then enter the cells to deliver lethal doses of chemotherapy. Normal, healthy cells remain unscathed.

The team conducted experiments first on cells growing in laboratory dishes, and then on mice bearing human prostate tumors. The tumors shrank dramatically, and all of the treated mice survived the study; the untreated control animals did not.

"A single injection of our nanoparticles completely eradicated the tumors in five of the seven treated animals, and the remaining animals also had significant tumor reduction, compared to the controls," said Dr. Omid C. Farokhzad, an assistant professor at Brigham and Women’s Hospital and Harvard Medical School.

Farokhzad and MIT Institute Professor Robert Langer led the team of eight researchers. (Farokhzad was formerly a research fellow in Langer’s lab.)

The scientists said that further testing is needed. Although all the parts and pieces of their new system are known to be safe, the system itself must yet be proven safe and effective in humans. This means thorough testing must be done in larger animals, and eventually in humans.

"We’re most interested in developing a system that ends up in the clinic helping patients," Farokhzad said. To make that happen, he added, "we brought in cancer specialists and urologists to collaborate with us."

Further, he said, from an engineering perspective "we wanted to develop a broadly applicable system, one that other investigators can alter for their own purposes."

For example, Langer said, researchers "can put different things inside, or other things on the outside, of the nanoparticles. In fact, this technology could be applied to almost any disease" by re-engineering the nanoparticles’ properties. The nanoparticles work like a bus that can safely carry different passengers to different destinations.

In the study, Farokhzad, Langer and colleagues tailor-made tiny sponge-like nanoparticles laced with the drug docetaxel. The particles are specifically designed to dissolve in a cell’s internal fluids, releasing the anti-cancer drug either rapidly or slowly, depending on what is needed. These nanoparticles were purposely made from materials that are familiar and approved for medical applications by the U.S. Food and Drug Administration. Thus all of the ingredients are known to be safe.

Also, to make sure only the correct cells are hit, the nanoparticles are "decorated" on the outside with targeting molecules called aptamers, tiny chunks of genetic material. Like homing devices, the aptamers specifically recognize the surface molecules on cancer cells, while avoiding normal cells. In other words, the bus is driven to the correct depot.

In addition, the nanoparticles also display polyethylene glycol molecules, which keep them from being rapidly destroyed by macrophages, cells that guard against foreign substances entering the body.

The team chose nanoparticles as drug-delivery vehicles because they are so small that living cells readily swallow them when they arrive at the cell’s surface. Langer said that particles larger than 200 nanometers are less likely to get through a cell’s membrane. A nanometer is one-billionth of a meter.

The Farokhzad-Langer team created particles that are about 150 nanometers in size: a thousand sitting side by side might equal the width of a human hair.

Elizabeth Thomson | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>