Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Notch effect steers stem cells into cells of the nervous system

11.04.2006
Stem cell scientists at the University of Edinburgh have discovered that Notch, a protein first discovered more than 80 years ago in the fruit fly, directs unspecialized embryonic stem cells to become cells of the nervous system. These unexpected findings pave the way for using lab-grown cells to model disease and test the effects of new drugs, and are published online this week in the open-access journal PLoS Biology.

Embryonic stem cells have the potential to make all 200 cell types in the body. The challenge is to restrain this diversity and uncover the signals that commit stem cells to a single specialised function. Sally Lowell and her colleagues have now established that Notch gives embryonic stem cells the critical push towards becoming cells of the nervous system.


When Notch is activated in embryonic stem cells, most turn into nerve cells (green)


When Notch is switched off, most cells remain as embryonic stem cells (pink)

The researchers show that when Notch is activated in embryonic stem cells, up to 90% of the cells in the dish become nerve cells. In any colony of embryonic stem cells, under normal conditions, many never become cells of the nervous system: they spontaneously change into other cell types or remain as embryonic stem cells.

The Notch effect can be observed in both mouse and human embryonic stem cells, and can be created without any recourse to genetic engineering - all it takes is the presence of Notch activating signals in the cells that stem cells grow on.

As individual embryonic stem cells become specialised, they communicate with those around them. Notch is a major means of communication, and has, according to Dr Lowell, “a domino effect: once it is switched on in a small group of cells, it sets off a wave of Notch activation in neighbouring cells, directing them all to become cells of the nervous system.”

This research has far-reaching implications for other aspects of stem cell research. Dr Lowell adds, “We expect our findings to shed light on how to make other types of cell, such as muscle or pancreatic cells. If we can identify the processes that Notch blocks in embryonic stem cells we will have a handle on how to get them started, and so drive embryonic stem cells to become other types of cell that are more difficult to grow in the lab”.

Says Professor Austin Smith, leading the Edinburgh team and coordinating the EuroStemCell consortium, “This discovery gives us another method to generate pure populations of nerve cells – so important for drug screening, disease modelling and potential cell therapies. As in stem cell colonies, communication between EuroStemCell researchers has been crucial to this discovery. Our work would not have been possible without information and materials from colleagues in Cambridge, Paris and Stockholm.”

This research was supported by EuroStemCell, the BBSRC, the MRC and The Wellcome Trust.

Ana Coutinho | alfa
Further information:
http://www.plos.org/press/plbi-04-05-smith.pdf

More articles from Life Sciences:

nachricht Gene switch may repair DNA and prevent cancer
12.02.2016 | Institute for Integrated Cell-Material Sciences at Kyoto University

nachricht New method opens crystal clear views of biomolecules
11.02.2016 | Deutsches Elektronen-Synchrotron DESY

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Symposium on Climate Change Adaptation in Africa 2016

12.02.2016 | Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

 
Latest News

LIGO confirms RIT's breakthrough prediction of gravitational waves

12.02.2016 | Physics and Astronomy

Gene switch may repair DNA and prevent cancer

12.02.2016 | Life Sciences

Using 'Pacemakers' in spinal cord injuries

12.02.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>