Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Notch effect steers stem cells into cells of the nervous system

11.04.2006
Stem cell scientists at the University of Edinburgh have discovered that Notch, a protein first discovered more than 80 years ago in the fruit fly, directs unspecialized embryonic stem cells to become cells of the nervous system. These unexpected findings pave the way for using lab-grown cells to model disease and test the effects of new drugs, and are published online this week in the open-access journal PLoS Biology.

Embryonic stem cells have the potential to make all 200 cell types in the body. The challenge is to restrain this diversity and uncover the signals that commit stem cells to a single specialised function. Sally Lowell and her colleagues have now established that Notch gives embryonic stem cells the critical push towards becoming cells of the nervous system.


When Notch is activated in embryonic stem cells, most turn into nerve cells (green)


When Notch is switched off, most cells remain as embryonic stem cells (pink)

The researchers show that when Notch is activated in embryonic stem cells, up to 90% of the cells in the dish become nerve cells. In any colony of embryonic stem cells, under normal conditions, many never become cells of the nervous system: they spontaneously change into other cell types or remain as embryonic stem cells.

The Notch effect can be observed in both mouse and human embryonic stem cells, and can be created without any recourse to genetic engineering - all it takes is the presence of Notch activating signals in the cells that stem cells grow on.

As individual embryonic stem cells become specialised, they communicate with those around them. Notch is a major means of communication, and has, according to Dr Lowell, “a domino effect: once it is switched on in a small group of cells, it sets off a wave of Notch activation in neighbouring cells, directing them all to become cells of the nervous system.”

This research has far-reaching implications for other aspects of stem cell research. Dr Lowell adds, “We expect our findings to shed light on how to make other types of cell, such as muscle or pancreatic cells. If we can identify the processes that Notch blocks in embryonic stem cells we will have a handle on how to get them started, and so drive embryonic stem cells to become other types of cell that are more difficult to grow in the lab”.

Says Professor Austin Smith, leading the Edinburgh team and coordinating the EuroStemCell consortium, “This discovery gives us another method to generate pure populations of nerve cells – so important for drug screening, disease modelling and potential cell therapies. As in stem cell colonies, communication between EuroStemCell researchers has been crucial to this discovery. Our work would not have been possible without information and materials from colleagues in Cambridge, Paris and Stockholm.”

This research was supported by EuroStemCell, the BBSRC, the MRC and The Wellcome Trust.

Ana Coutinho | alfa
Further information:
http://www.plos.org/press/plbi-04-05-smith.pdf

More articles from Life Sciences:

nachricht Learning from Nature: Genomic database standard alleviates search for novel antibiotics
02.09.2015 | Max-Planck-Institut für marine Mikrobiologie

nachricht Orang-utan females prefer cheek-padded males
02.09.2015 | Max Planck Institute for Evolutionary Anthropology, Leipzig

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How wind sculpted Earth's largest dust deposit

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from University of Arizona geoscientists. The study is the first to explain how the steep-fronted plateau formed.

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from...

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Tiny Drops of Early Universe 'Perfect' Fluid

02.09.2015 | Physics and Astronomy

Learning from Nature: Genomic database standard alleviates search for novel antibiotics

02.09.2015 | Life Sciences

International research project gets high level of funding

02.09.2015 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>