Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzyme crystal structure reveals ’unexpected’ genome repair functions

10.04.2006
New discovery could help improve some forms of chemotherapy
The study is being published in an advance online version of the journal Molecular Cell.

The research looked at XPB helicase from an archaea, a single cell organism similar to bacteria. Helicases are enzymes that unwind or separate the strands of the nucleic acid double helix, an action that is critical to transcription and nucleotide excision repair (NER), as well as other cell processes.

"XPB was initially identified as the gene responsible for NER defects in xeroderma pigmentosum patients, who are hypersensitive to light and have a dramatically increased risk of skin cancer," says John A. Tainer, a professor at Scripps Research and its Skaggs Institute for Chemical Biology who led the study. "This reflects the fact that XPB plays a key role in unwinding damaged DNA during NER, which removes a broad spectrum of DNA lesions, including those caused by exposure to ultraviolet light."

DNA needs constant repair because of the damage from a variety of sources that occurs to its base pairs of nucleotides. It is estimated that in every human cell more than 10,000 DNA bases are repaired each day, making NER critically important for cell survival and protection against mutations. NER is a critical defense mechanism that removes DNA lesions caused by the mutating effects of sunlight (ultraviolet light) and toxic chemicals.

In addition, NER is critical to the success of the anticancer drug cisplatin, since cisplatin works by initiating the process of DNA repair, in turn activating apoptosis or programmed cell death when the repair process fails. "Because chemotherapeutic agents like the chemotherapy drug cisplatin and radiation therapy work by essentially damaging DNA, any new understanding of the DNA repair mechanism could mean potential improvements in the treatment of cancer," Tainer says.

Prior to this study, there were no specific models for how XPB acts in DNA separation either to initiate transcription or to begin NER. There were also no models for the role that XPB, which is an essential subunit of Transcription Factor IIH (TFIIH) functional assembly complex, might play in changing conformations for TFIIH’s alternate roles in either transcription or DNA repair.

The XPB crystal structures developed by the researchers identified unexpected functional domains for XPB that, according to the study, help "address key questions about XPB structure-function relationships for transcription and nucleotide excision repair."

Research Associate Li Fan of Scripps Research, the first author of the study, adds, "We were surprised when we found that XPB contains a domain structurally similar to the mismatch recognition domain of a bacterial DNA repair protein MutS. MutS helps recognize and repair mismatched DNA in E. coli. These two proteins have little sequence similarity. Biochemical assays following this discovery indicate that this domain allows XPB to interact with damaged DNA and enhances its unwinding activity on damaged DNA."

The report suggests that unknown protein and DNA interactions at transcription sites activate XPB within the TFIIH complex to allow it to start the DNA unwinding process.

"Even though TFIIH does not act directly in initial damage recognition, the interaction of XPB with the DNA lesion suggests that XPB plays a role in switching TFIIH from transcription mode to NER," Tainer says. "The structural biochemistry of XPB that we discovered shows an unexpected molecular mechanism by which XPB plays a key role in determining exactly how TFIIH functions, whether in transcription or repair mode."

Keith McKeown | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Millions through license revenues

27.04.2017 | Health and Medicine

The TU Ilmenau develops tomorrow’s chip technology today

27.04.2017 | Information Technology

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>