Towards the mechanism of cell respiration

The functions of the lungs, the blood circulation, and the red blood cells in respiration are only an overture to the physicochemical reaction in the cells where oxygen is reduced to water. Oxygen consumption in cell respiration is a strictly controlled enzymatic reaction in the inner mitochondrial membrane. The respiratory enzyme cytochrome oxidase functions as a proton pump that transduces free energy from oxygen reduction to an electrochemical proton gradient, which is utilised by another enzyme to produce ATP, the cells’ general energy currency.

The results by the research group of academy professor Mårten Wikström revealed the coupling between the function of the proton pump and oxygen reduction: an internal electron transfer initiates the first stage of the pump mechanism. “This finding opens the door towards understanding the mechanism, which has been the subject of research for almost 30 years”, Wikström says.

The proton pump of cytochrome oxidase is closely linked to the process by which the energy of foodstuffs is transduced into a useful energy source for our cells. Another enzyme makes use of the proton gradient generated by the pump, synthesising adenosine triphosphate (ATP) that powers energy-requiring functions such as muscle contraction and nerve impulses. The central biological importance of this system is evident, for example from the almost immediate death that follows from blocking cell respiration, e.g. by cyanide.

Cytochrome oxidase functions as an energy transducer in much the same way as a fuel cell. It is a biological “nanomachine” that has evolved over billions of years, and has an efficiency better than 90%.

Wikström and his colleagues study both the chemical reaction and the proton pump of cytochrome oxidase by biophysical techniques with a time resolution less than one microsecond. In this way it has been possible to monitor the enzyme’s functions in real time. It takes about one millisecond for the respiratory enzyme to reduce one oxygen molecule to water. This time includes all the partial reactions, and also the efficient energy-transducing mechanism.

Media Contact

Mårten Wikström EurekAlert!

More Information:

http://www.helsinki.fi

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Bringing bio-inspired robots to life

Nebraska researcher Eric Markvicka gets NSF CAREER Award to pursue manufacture of novel materials for soft robotics and stretchable electronics. Engineers are increasingly eager to develop robots that mimic the…

Bella moths use poison to attract mates

Scientists are closer to finding out how. Pyrrolizidine alkaloids are as bitter and toxic as they are hard to pronounce. They’re produced by several different types of plants and are…

AI tool creates ‘synthetic’ images of cells

…for enhanced microscopy analysis. Observing individual cells through microscopes can reveal a range of important cell biological phenomena that frequently play a role in human diseases, but the process of…

Partners & Sponsors