Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A large step forward in the fight against African sleeping sickness

10.04.2006
Each year, over 300,000 people die of African sleeping sickness (trypanosomiasis).
Researchers from the Flanders Interuniversity Institute for Biotechnology (VIB) connected to the Free University of Brussels are making strides in the battle against this disease. They have coupled the human protein ApoL-1 with a nanobody in order to very specifically eliminate the infection caused by the pathogenic parasites, against which our defense mechanism is powerless. Tests on mice are already promising. The recently published research results offer new possibilities for people who have contracted this disease.

African sleeping sickness

About 400,000 people worldwide suffer from the deadly African sleeping sickness. The disease produces severe sleep disorders that ultimately end in coma, followed by death. At present, fewer than 10% of the patients are treated in time. But on the other hand, the current treatment is also very toxic, and in many cases also results in the patient’s death.

African sleeping sickness is a disorder caused by the trypanosome parasite. The blood-sucking tsetse fly transmits the parasite from person to person. Once someone has been infected by the parasite, the person’s body has great difficulty getting the infection under control, because the parasite constantly changes appearance. Thus, the trypanosome remains impervious to the antibodies that the body produces.

Parasite eludes human defense mechanism

Fortunately, our body has a special defense mechanism that can help us in the fight against African trypanosomes. Our blood contains ApoL-1, which is toxic to - and neutralizes - most types of trypanosomes.

However, there is one trypanosome against which we are not protected: Trypanosoma brucei rhodesiense. This parasite is resistant to ApoL-1, because it has particular proteins that counteract ApoL-1’s action.

For some time now, scientists have known that a variant of ApoL-1 is not neutralized by Trypanosoma brucei rhodesiense. This truncated ApoL-1 variant can help to overcome the parasite that infects our body, but only when it is present in very high concentrations. The challenge for the researchers was to get this truncated ApoL-1 variant efficiently to the place where it is needed: onto the surface of the parasite.

Nanobody carries ApoL-1 variant to the parasite

Under the direction of Serge Muyldermans and Patrick De Baetselier, VIB researchers have previously produced a nanobody (a very small antibody) that targets and binds to the parasite very specifically (Stijlemans et al., 2004). Toya Nath Baral and his VIB colleagues have now succeeded in coupling this nanobody to the abbreviated ApoL-1 variant. This creates a special product that binds immediately to the parasite and thus brings the ApoL-1 variant to the place where it can carry out its neutralizing action.

All the tests performed on mice have been very promising: Trypanosome-infected mice survive after 1 treatment. The parasite is removed from the blood and all effects associated with the disease disappear. There is every indication that this substance can also counteract Trypanosoma brucei rhodesiense in humans - sparing them from African sleeping sickness.

Given that this research can raise a lot of questions for patients, we ask you to please refer questions in your report or article to the email address that VIB makes available for this purpose: patienteninfo@vib.be. Everyone can submit questions concerning this and other medically-oriented research directly to VIB via this address.

This research was accomplished through an intense collaboration between VIB and the Free University of Brussels (VUB and ULB).

Joke Comijn | alfa
Further information:
http://www.vib.be

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>