Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Big breakthrough for tiny particles

10.04.2006
MIT chemical engineers have devised an elegant new method for creating complex polymeric microparticles that could have applications in a variety of fields, from drug delivery in medicine to the creation of building blocks for the photonic materials that carry light. The particles can also add texture to skin creams and color to inks.

The new synthesis method gives researchers an extraordinary degree of control over the shape and chemical properties of the microparticles, which range in size from about 1 millionth of a meter to a millimeter.

"We have precise control over shape and an ability to create patterned chemical regions, that is rather unprecedented," said Assistant Professor Patrick Doyle of chemical engineering, one of the authors of a report appearing in the online edition of Nature Materials on April 9.

Doyle says he hopes other researchers will adopt his team’s new technique of continuous flow lithography (CFL), which allows for faster, easier production of microparticles of diverse shape, size and chemical composition.

CFL builds on the well-known technique of photolithography but its novelty lies in the fact that it is performed in a laminar (not turbulent) flowing stream as opposed to the traditionally used stationary film. Wherever pulses of ultraviolet light strike the flowing stream of small building blocks, or oligomers, a reaction is set off that forms a solid polymeric particle in a process known as photopolymerization.

The method makes use of microfluidics - tiny fluid-filled channels with cross-sections typically smaller than a strand of hair. Until now, microfluidic methods have been limited to producing spheres, discs or cylinders. However, with CFL, the particles can be configured into just about any projected 2D shape the researchers want by using a transparency mask to define the shape of a beam of ultraviolet light and focusing it with a microscope. As liquid flows through a microfluidic device, where the synthesis occurs, the shape is repeatedly imprinted onto the oligomer stream, at a rate of about 100,000 particles per hour with the current simple design.

"From an engineering point of view, converting a batch process (photolithography) to a continuous process may have significant advantage when we consider scaling up the technique," said graduate student Dhananjay Dendukuri, lead author on the paper.

The researchers can also create particles with different chemical properties in different locations - for example, a rod that is hydrophilic (water-loving) at one end and hydrophobic (water-fearing) at the other. Such particles are examples of so-called Janus particles, after the Roman god with a double-faced head, and may find use in e-paper technologies or as new building blocks for self-assembled structures.

The new method also makes it easier to create "barcoded" particles, which have an array of chemical properties in different locations. Instead of adding "stripes," or chemical properties, one at a time, the new technique allows them all to be added at once, said Doyle.

Potential medical applications for such particles include drug delivery and performing diagnostic tests, such as testing blood for the presence of certain antibodies or other proteins. Graduate student Daniel Pregibon, one of the authors, said he is interested in creating ring-shaped particles, or "cell cages," that would trap cells for high throughput single cell studies.

Other authors on the paper are Alan Hatton, Ralph Landau Professor of Chemical Engineering Practice, and senior physics major Jesse Collins.

The research was supported by a National Science Foundation grant.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>