Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fish oil may help protect against retinal degenerative diseases

06.04.2006
A invited paper published in Trends in Neuroscience this week by Nicolas G. Bazan, MD, PhD, Boyd Professor and Director of the Neuroscience Center of Excellence at LSU Health Sciences Center in New Orleans, reports on the role that the omega-3 fatty acids in fish oil play in protecting cells in the retina from degenerative diseases like retinitis pigmentosa and age-related macular degeneration, the leading cause of loss of vision in those older than 65.

The paper is titled, Cell survival matters: docosahexaenoic acid signaling, neuroprotection and photoreceptors.

In these blinding eye diseases, photoreceptor cells (rods and cones) degenerate and die. Although this process can be triggered by many different things, one of the most significant protective factors may be the close association of retinal pigment epithelial (RPE) cells and the amount of docosahexaenoic acid (DHA) in them. The main role of RPE cells is photoreceptor maintenance–they conduct the daily shedding, internalization, and degradation of the tips of the photoreceptor outer segments. It now appears that RPE cells are also key to the survival of photoreceptor cells.

Both photoreceptor and RPE cell types are normally exposed to potentially damaging factors such as sunlight and high oxygen tension.

How the cells avoid damage from these factors and others has been a mystery, up to now. Dr. Bazan’s LSUHSC group, in close collaboration with colleagues at Harvard, has made several key discoveries that are beginning to provide answers to this complex riddle. One of them is the importance of DHA. RPE cells cope with sunlight and oxidative stress, as well as trauma, by using antioxidants like Vitamin E, present in the cells. Part of the RPE cells’ response is to activate the synthesis of a major neuroprotective compound, which Dr. Bazan and colleagues discovered, called neuroprotectin D1 (NPD1). NPD1 inhibits genes causing inflammation and cell death that oxidative stress and other triggers turn on. RPE cells contain the omega-3 fatty acid family member, DHA, which Dr. Bazan and colleagues found is a precursor to NPD1. RPE cells regulate the uptake, conservation, and delivery of DHA to the photoreceptor cells. DHA, known to be in short supply in patients with retinitis pigmentosa and Usher’s syndrome, promotes protective cell signaling by facilitating the expression of helpful rather than destructive proteins as well as stimulating the production of NPD1. DHA and NPD1 also decrease the production of damaging free radicals. DHA has been shown by Dr. Bazan to promote survival and inhibit cell death not only of photoreceptor cells, but also of neurons in an experimental model of Alzheimer’s disease.

Questions remain, including the identification of another receptor believed to be an important pathway for NPD1, more information about the signals that control the formation of NPD1, and if NPD1 or a synthetic counterpart might be effective when administered therapeutically.

"Because the early clinical manifestations of most retinal degeneration precedes massive photoreceptor cell death, it is important to define the initial crucial events," notes Dr. Bazan. "This knowledge might be applicable to the design of novel therapeutic interventions to halt or slow disease progression."

Leslie Capo | EurekAlert!
Further information:
http://www.lsuhsc.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>