New ’wrinkle’ in Botox treatment could lead to lower doses, better safety

By allowing lower doses, the new approach could also make the treatment safer by reducing the risk of complications associated with immune system recognition that can sometimes occur with frequent injections, according to scientists at the Scripps Research Institute in La Jolla, Calif. Smaller, more potent doses may even lead to lower prices for the popular wrinkle-remover, the researchers say. Their study is published in the March 29 issue of the weekly Journal of the American Chemical Society.

Although popular for removing wrinkles, Botox is also used to treat a growing number of other conditions, including migraine headaches, lazy eyes and excessive sweating. It is developed from the botulinum neurotoxin, the most lethal poison known and a potential bioterrorist weapon. In a medical setting, small doses of a purified version of the toxin block the release of a chemical (acetylcholine) that signals muscle contraction, resulting in a localized, temporary paralysis that erases wrinkles and unwanted muscle spasms.

Kim Janda, Ph.D., a chemistry professor at Scripps and head of the research study, and his associates developed a synthetic molecule that can ‘superactivate’ the neurotoxin used in Botox by binding to specific sites on the neurotoxin protein. The synthetic molecule works by increasing the activity of an enzyme that cleaves proteins that are critical for neurotransmitter release, thereby increasing the blockage of acetylcholine and enhancing the toxin’s paralyzing effect. In laboratory studies, the researchers found that this ‘superactivator’ could boost the activity of the toxin by as much as 14 times that of the untreated toxin.

The new treatment has not yet been tested in humans or animals, the researchers say. If further studies prove successful, the technique could be available to consumers in four to six years, the researchers estimate.

“We have developed a synthetic molecule that binds to the toxin and increases its normal function,” Janda says. “The discovery of small molecule activators may ultimately provide a valuable method for minimizing dosage, reducing resistance, and increasing its clinical efficacy.”

One possible complication of Botox injections is that their repeated use can lead to recognition by the immune system, especially when patients are given frequent, high doses of the toxin. Higher doses can also increase the risk of adverse complications, which can include pain in the face, redness at the injection site and muscle weakness. The new ‘superactivator’ formula could allow lower doses to be administered — roughly one-tenth the normal dose — while reducing the possibility of unwanted immune complications, Janda and his associates say. Botox injections should always be performed by a qualified doctor, according to the U.S. Food and Drug Administration.

Media Contact

Michael Bernstein EurekAlert!

More Information:

http://www.acs.org

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors