Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New ’wrinkle’ in Botox treatment could lead to lower doses, better safety

06.04.2006
There may soon be a better way to fight unsightly wrinkles. Researchers have discovered a novel way to increase the potency of botulinum neurotoxin treatments — commonly known as Botox — that they say could one day allow patients to receive the injections less frequently while maintaining or even enhancing its cosmetic benefits.

By allowing lower doses, the new approach could also make the treatment safer by reducing the risk of complications associated with immune system recognition that can sometimes occur with frequent injections, according to scientists at the Scripps Research Institute in La Jolla, Calif. Smaller, more potent doses may even lead to lower prices for the popular wrinkle-remover, the researchers say. Their study is published in the March 29 issue of the weekly Journal of the American Chemical Society.

Although popular for removing wrinkles, Botox is also used to treat a growing number of other conditions, including migraine headaches, lazy eyes and excessive sweating. It is developed from the botulinum neurotoxin, the most lethal poison known and a potential bioterrorist weapon. In a medical setting, small doses of a purified version of the toxin block the release of a chemical (acetylcholine) that signals muscle contraction, resulting in a localized, temporary paralysis that erases wrinkles and unwanted muscle spasms.

Kim Janda, Ph.D., a chemistry professor at Scripps and head of the research study, and his associates developed a synthetic molecule that can ‘superactivate’ the neurotoxin used in Botox by binding to specific sites on the neurotoxin protein. The synthetic molecule works by increasing the activity of an enzyme that cleaves proteins that are critical for neurotransmitter release, thereby increasing the blockage of acetylcholine and enhancing the toxin’s paralyzing effect. In laboratory studies, the researchers found that this ‘superactivator’ could boost the activity of the toxin by as much as 14 times that of the untreated toxin.

The new treatment has not yet been tested in humans or animals, the researchers say. If further studies prove successful, the technique could be available to consumers in four to six years, the researchers estimate.

"We have developed a synthetic molecule that binds to the toxin and increases its normal function," Janda says. "The discovery of small molecule activators may ultimately provide a valuable method for minimizing dosage, reducing resistance, and increasing its clinical efficacy."

One possible complication of Botox injections is that their repeated use can lead to recognition by the immune system, especially when patients are given frequent, high doses of the toxin. Higher doses can also increase the risk of adverse complications, which can include pain in the face, redness at the injection site and muscle weakness. The new ‘superactivator’ formula could allow lower doses to be administered — roughly one-tenth the normal dose — while reducing the possibility of unwanted immune complications, Janda and his associates say. Botox injections should always be performed by a qualified doctor, according to the U.S. Food and Drug Administration.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>