Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New ’wrinkle’ in Botox treatment could lead to lower doses, better safety

06.04.2006
There may soon be a better way to fight unsightly wrinkles. Researchers have discovered a novel way to increase the potency of botulinum neurotoxin treatments — commonly known as Botox — that they say could one day allow patients to receive the injections less frequently while maintaining or even enhancing its cosmetic benefits.

By allowing lower doses, the new approach could also make the treatment safer by reducing the risk of complications associated with immune system recognition that can sometimes occur with frequent injections, according to scientists at the Scripps Research Institute in La Jolla, Calif. Smaller, more potent doses may even lead to lower prices for the popular wrinkle-remover, the researchers say. Their study is published in the March 29 issue of the weekly Journal of the American Chemical Society.

Although popular for removing wrinkles, Botox is also used to treat a growing number of other conditions, including migraine headaches, lazy eyes and excessive sweating. It is developed from the botulinum neurotoxin, the most lethal poison known and a potential bioterrorist weapon. In a medical setting, small doses of a purified version of the toxin block the release of a chemical (acetylcholine) that signals muscle contraction, resulting in a localized, temporary paralysis that erases wrinkles and unwanted muscle spasms.

Kim Janda, Ph.D., a chemistry professor at Scripps and head of the research study, and his associates developed a synthetic molecule that can ‘superactivate’ the neurotoxin used in Botox by binding to specific sites on the neurotoxin protein. The synthetic molecule works by increasing the activity of an enzyme that cleaves proteins that are critical for neurotransmitter release, thereby increasing the blockage of acetylcholine and enhancing the toxin’s paralyzing effect. In laboratory studies, the researchers found that this ‘superactivator’ could boost the activity of the toxin by as much as 14 times that of the untreated toxin.

The new treatment has not yet been tested in humans or animals, the researchers say. If further studies prove successful, the technique could be available to consumers in four to six years, the researchers estimate.

"We have developed a synthetic molecule that binds to the toxin and increases its normal function," Janda says. "The discovery of small molecule activators may ultimately provide a valuable method for minimizing dosage, reducing resistance, and increasing its clinical efficacy."

One possible complication of Botox injections is that their repeated use can lead to recognition by the immune system, especially when patients are given frequent, high doses of the toxin. Higher doses can also increase the risk of adverse complications, which can include pain in the face, redness at the injection site and muscle weakness. The new ‘superactivator’ formula could allow lower doses to be administered — roughly one-tenth the normal dose — while reducing the possibility of unwanted immune complications, Janda and his associates say. Botox injections should always be performed by a qualified doctor, according to the U.S. Food and Drug Administration.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>