Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New ’wrinkle’ in Botox treatment could lead to lower doses, better safety

06.04.2006
There may soon be a better way to fight unsightly wrinkles. Researchers have discovered a novel way to increase the potency of botulinum neurotoxin treatments — commonly known as Botox — that they say could one day allow patients to receive the injections less frequently while maintaining or even enhancing its cosmetic benefits.

By allowing lower doses, the new approach could also make the treatment safer by reducing the risk of complications associated with immune system recognition that can sometimes occur with frequent injections, according to scientists at the Scripps Research Institute in La Jolla, Calif. Smaller, more potent doses may even lead to lower prices for the popular wrinkle-remover, the researchers say. Their study is published in the March 29 issue of the weekly Journal of the American Chemical Society.

Although popular for removing wrinkles, Botox is also used to treat a growing number of other conditions, including migraine headaches, lazy eyes and excessive sweating. It is developed from the botulinum neurotoxin, the most lethal poison known and a potential bioterrorist weapon. In a medical setting, small doses of a purified version of the toxin block the release of a chemical (acetylcholine) that signals muscle contraction, resulting in a localized, temporary paralysis that erases wrinkles and unwanted muscle spasms.

Kim Janda, Ph.D., a chemistry professor at Scripps and head of the research study, and his associates developed a synthetic molecule that can ‘superactivate’ the neurotoxin used in Botox by binding to specific sites on the neurotoxin protein. The synthetic molecule works by increasing the activity of an enzyme that cleaves proteins that are critical for neurotransmitter release, thereby increasing the blockage of acetylcholine and enhancing the toxin’s paralyzing effect. In laboratory studies, the researchers found that this ‘superactivator’ could boost the activity of the toxin by as much as 14 times that of the untreated toxin.

The new treatment has not yet been tested in humans or animals, the researchers say. If further studies prove successful, the technique could be available to consumers in four to six years, the researchers estimate.

"We have developed a synthetic molecule that binds to the toxin and increases its normal function," Janda says. "The discovery of small molecule activators may ultimately provide a valuable method for minimizing dosage, reducing resistance, and increasing its clinical efficacy."

One possible complication of Botox injections is that their repeated use can lead to recognition by the immune system, especially when patients are given frequent, high doses of the toxin. Higher doses can also increase the risk of adverse complications, which can include pain in the face, redness at the injection site and muscle weakness. The new ‘superactivator’ formula could allow lower doses to be administered — roughly one-tenth the normal dose — while reducing the possibility of unwanted immune complications, Janda and his associates say. Botox injections should always be performed by a qualified doctor, according to the U.S. Food and Drug Administration.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>