Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Signaling proteins may represent biomarkers for melanoma

06.04.2006
For the first time, researchers studying patients with abnormal moles have identified proteins that could help predict whether such moles will progress into melanoma, the deadliest form of skin cancer. The study provides promising evidence that the proteins may represent potential biomarkers for prevention therapy. The results were announced today at the annual meeting of the American Association for Cancer Research (AACR), at the Washington Convention Center in Washington, D.C. The study, abstract number 5742, also looked at the effect of a common treatment for melanoma, interferon, on the levels of these biomarker proteins.

While investigating the mechanisms of action of interferon treatment on patients at high risk for melanoma recurrence who had multiple abnormal moles, investigators found that two intracellular signaling proteins called signal transducers and activators of transcription, STAT1 and STAT3, were correlated with the degree of mole abnormality when examined under a microscope. The researchers also found that interferon regulated the proteins in a manner that was dependent on its dose.

"While abnormal moles are a major risk factor for new primary melanoma development, it is difficult to know who among these patients will eventually develop the disease," said principal investigator John Kirkwood, M.D., professor of medicine at the University of Pittsburgh and director of the Melanoma Center at the University of Pittsburgh Cancer Institute (UPCI). "Rather than aggressively treating all of these patients, our hope with further study is to potentially test for these proteins and select those patients most likely to benefit from specific doses of interferon therapy."

In the study, researchers treated 40 patients at various levels of risk for recurrence of melanoma with interferon administered at either high or low doses. They then examined changes in the appearance of the patients’ moles under a microscope and used molecular markers to determine the expression levels of STAT1, a protein associated with anti-tumor effects, and STAT3, a protein linked to melanoma progression. They found that the more severe the pathologic abnormality of the mole, the greater the level of STAT3 expression. Results also indicated that after high-dose interferon the level of STAT 1 increased 7.8 times and after low-dose interferon it increased 1.4 times over pretreatment levels. In contrast, STAT3 was reduced by 55 percent with high doses of interferon and by 39 percent with low doses. The ratio of STAT1 to STAT3 best represented the impact of interferon, increasing 23 times with high dose interferon and 2.6 times with low doses.

"Our study found that interferon regulates expression of STAT1 and STAT3 in a dose-dependent manner and provides a useful biomarker of interferon impact on these well- established precursor lesions, which have the potential to become cancerous," said Dr. Kirkwood. "This suggests that these markers will be important to follow in our efforts to prevent the new development of melanoma in the skin of our patients, as well as melanoma recurrence."

According to American Cancer Society predictions, an estimated 62,190 new cases of melanoma are expected in 2006 and 7,910 deaths are expected to occur.

Clare Collins | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>