Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Signaling proteins may represent biomarkers for melanoma

06.04.2006
For the first time, researchers studying patients with abnormal moles have identified proteins that could help predict whether such moles will progress into melanoma, the deadliest form of skin cancer. The study provides promising evidence that the proteins may represent potential biomarkers for prevention therapy. The results were announced today at the annual meeting of the American Association for Cancer Research (AACR), at the Washington Convention Center in Washington, D.C. The study, abstract number 5742, also looked at the effect of a common treatment for melanoma, interferon, on the levels of these biomarker proteins.

While investigating the mechanisms of action of interferon treatment on patients at high risk for melanoma recurrence who had multiple abnormal moles, investigators found that two intracellular signaling proteins called signal transducers and activators of transcription, STAT1 and STAT3, were correlated with the degree of mole abnormality when examined under a microscope. The researchers also found that interferon regulated the proteins in a manner that was dependent on its dose.

"While abnormal moles are a major risk factor for new primary melanoma development, it is difficult to know who among these patients will eventually develop the disease," said principal investigator John Kirkwood, M.D., professor of medicine at the University of Pittsburgh and director of the Melanoma Center at the University of Pittsburgh Cancer Institute (UPCI). "Rather than aggressively treating all of these patients, our hope with further study is to potentially test for these proteins and select those patients most likely to benefit from specific doses of interferon therapy."

In the study, researchers treated 40 patients at various levels of risk for recurrence of melanoma with interferon administered at either high or low doses. They then examined changes in the appearance of the patients’ moles under a microscope and used molecular markers to determine the expression levels of STAT1, a protein associated with anti-tumor effects, and STAT3, a protein linked to melanoma progression. They found that the more severe the pathologic abnormality of the mole, the greater the level of STAT3 expression. Results also indicated that after high-dose interferon the level of STAT 1 increased 7.8 times and after low-dose interferon it increased 1.4 times over pretreatment levels. In contrast, STAT3 was reduced by 55 percent with high doses of interferon and by 39 percent with low doses. The ratio of STAT1 to STAT3 best represented the impact of interferon, increasing 23 times with high dose interferon and 2.6 times with low doses.

"Our study found that interferon regulates expression of STAT1 and STAT3 in a dose-dependent manner and provides a useful biomarker of interferon impact on these well- established precursor lesions, which have the potential to become cancerous," said Dr. Kirkwood. "This suggests that these markers will be important to follow in our efforts to prevent the new development of melanoma in the skin of our patients, as well as melanoma recurrence."

According to American Cancer Society predictions, an estimated 62,190 new cases of melanoma are expected in 2006 and 7,910 deaths are expected to occur.

Clare Collins | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>