Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Signaling proteins may represent biomarkers for melanoma

06.04.2006
For the first time, researchers studying patients with abnormal moles have identified proteins that could help predict whether such moles will progress into melanoma, the deadliest form of skin cancer. The study provides promising evidence that the proteins may represent potential biomarkers for prevention therapy. The results were announced today at the annual meeting of the American Association for Cancer Research (AACR), at the Washington Convention Center in Washington, D.C. The study, abstract number 5742, also looked at the effect of a common treatment for melanoma, interferon, on the levels of these biomarker proteins.

While investigating the mechanisms of action of interferon treatment on patients at high risk for melanoma recurrence who had multiple abnormal moles, investigators found that two intracellular signaling proteins called signal transducers and activators of transcription, STAT1 and STAT3, were correlated with the degree of mole abnormality when examined under a microscope. The researchers also found that interferon regulated the proteins in a manner that was dependent on its dose.

"While abnormal moles are a major risk factor for new primary melanoma development, it is difficult to know who among these patients will eventually develop the disease," said principal investigator John Kirkwood, M.D., professor of medicine at the University of Pittsburgh and director of the Melanoma Center at the University of Pittsburgh Cancer Institute (UPCI). "Rather than aggressively treating all of these patients, our hope with further study is to potentially test for these proteins and select those patients most likely to benefit from specific doses of interferon therapy."

In the study, researchers treated 40 patients at various levels of risk for recurrence of melanoma with interferon administered at either high or low doses. They then examined changes in the appearance of the patients’ moles under a microscope and used molecular markers to determine the expression levels of STAT1, a protein associated with anti-tumor effects, and STAT3, a protein linked to melanoma progression. They found that the more severe the pathologic abnormality of the mole, the greater the level of STAT3 expression. Results also indicated that after high-dose interferon the level of STAT 1 increased 7.8 times and after low-dose interferon it increased 1.4 times over pretreatment levels. In contrast, STAT3 was reduced by 55 percent with high doses of interferon and by 39 percent with low doses. The ratio of STAT1 to STAT3 best represented the impact of interferon, increasing 23 times with high dose interferon and 2.6 times with low doses.

"Our study found that interferon regulates expression of STAT1 and STAT3 in a dose-dependent manner and provides a useful biomarker of interferon impact on these well- established precursor lesions, which have the potential to become cancerous," said Dr. Kirkwood. "This suggests that these markers will be important to follow in our efforts to prevent the new development of melanoma in the skin of our patients, as well as melanoma recurrence."

According to American Cancer Society predictions, an estimated 62,190 new cases of melanoma are expected in 2006 and 7,910 deaths are expected to occur.

Clare Collins | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Rapid environmental change makes species more vulnerable to extinction

19.10.2017 | Life Sciences

Integrated lab-on-a-chip uses smartphone to quickly detect multiple pathogens

19.10.2017 | Interdisciplinary Research

Fossil coral reefs show sea level rose in bursts during last warming

19.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>