Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly found species fills evolutionary gap between fish and land animals

06.04.2006
Paleontologists have discovered fossils of a species that provides the missing evolutionary link between fish and the first animals that walked out of water onto land about 375 million years ago. The newly found species, Tiktaalik roseae, has a skull, a neck, ribs and parts of the limbs that are similar to four-legged animals known as tetrapods, as well as fish-like features such as a primitive jaw, fins and scales.

These fossils, found on Ellesmere Island in Arctic Canada, are the most compelling examples yet of an animal that was at the cusp of the fish-tetrapod transition. The new find is described in two related research articles highlighted on the cover of the April 6, 2006, issue of Nature.

"Tiktaalik blurs the boundary between fish and land-living animal both in terms of its anatomy and its way of life," said Neil Shubin, professor and chairman of organismal biology at the University of Chicago and co-leader of the project.

Tiktaalik was a predator with sharp teeth, a crocodile-like head and a flattened body. The well-preserved skeletal material from several specimens, ranging from 4 to 9 feet long, enabled the researchers to study the mosaic pattern of evolutionary change in different parts of the skeleton as fish evolved into land animals.

The high quality of the fossils also allowed the team to examine the joint surfaces on many of the fin bones, concluding that the shoulder, elbow and wrist joints were capable of supporting the body-like limbed animals.

"Human comprehension of the history of life on Earth is taking a major leap forward," said H. Richard Lane, director of sedimentary geology and paleobiology at the National Science Foundation. "These exciting discoveries are providing fossil ’Rosetta Stones’ for a deeper understanding of this evolutionary milestone--fish to land-roaming tetrapods."

One of the most important aspects of this discovery is the illumination of the fin-to-limb transition. In a second paper in the journal, the scientists describe in depth how the pectoral fin of the fish serves as the origin of the tetrapod limb.

Embedded in the fin of Tiktaalik are bones that compare to the upper arm, forearm and primitive parts of the hand of land-living animals.

"Most of the major joints of the fin are functional in this fish," Shubin said. "The shoulder, elbow and even parts of the wrist are already there and working in ways similar to the earliest land-living animals."

At the time that Tiktaalik lived, what is now the Canadian Arctic region was part of a landmass that straddled the equator. It had a subtropical climate, much like the Amazon basin today. The species lived in the small streams of this delta system. According to Shubin, the ecological setting in which these animals evolved provided an environment conducive to the transition to life on land.

"We knew that the rocks on Ellesmere Island offered a glimpse into the right time period and the right ancient environments to provide the potential for finding fossils documenting this important evolutionary transition," said Ted Daeschler of the Academy of Natural Sciences in Philadelphia, a co-leader of the project. "Finding the fossils within this remote, rugged terrain, however, required a lot of time and effort."

The nature of the deposits where the fossils were found and the skeletal structure of Tiktaalik suggests the animal lived in shallow water and perhaps even out of the water for short periods.

"The skeleton of Tiktaalik indicates that it could support its body under the force of gravity whether in very shallow water or on land," said Farish Jenkins, professor of organismic and evolutionary biology at Harvard University and co-author of the papers. "This represents a critical early phase in the evolution of all limbed animals, including humans--albeit a very ancient step."

The new fossils were collected during four summers of exploration in Canada’s Nunavut Territory, 600 miles from the North Pole, by paleontologists from the Academy of Natural Sciences in Philadelphia, the University of Chicago and Harvard University. Although the team has amassed a diverse assemblage of fossil fish, Shubin said, the discovery of these transitional fossils in 2004 was a vindication of their persistence.

The scientists asked the Nunavut people to propose a formal scientific name for the new species. The Elders Council of Nunavut, the Inuit Qaujimajatuqangit, suggested "Tiktaalik" (tic-TAH-lick)--the word in the Inuktikuk language for "a large, shallow water fish."

The scientists worked through the Department of Culture, Language, Elders and Youth in Nunavut to collaborate with the local Inuit communities. All fossils are the property of the people of Nunavut and will be returned to Canada after they are studied.

Catherine Gianaro | EurekAlert!
Further information:
http://www.uchospitals.edu

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>