Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One gene provides fruit fly both antenna and color vision

06.04.2006
Brilliant reception

A team of researchers that includes biologists from Washington University in St. Louis has discovered that a gene involved in the development and function of the fruit fly antenna also gives the organism its color vision.


Pretty fly - for a fruit fly. The areas stained blue are regions in the fruit fly where the spineless gene is expressed. WUSTL biologists Ian and Dianne Duncan have spent years making discoveries of how the gene is involved in making the fruit fly antenna. Now they are part of a team that has found that spineless plays a key role in the organism’s color vision.

Claude Desplan, Ph.D., professor of biology at New York University, and his students made the discovery and provided the data. Ian Duncan, Washington University professor of biology, and his wife, research assistant Dianne Duncan, provided the Desplan laboratory fruit fly (Drosophila) clones and mutants and technical assistance that helped locate where the gene, called spineless, is expressed in the retina.

The Duncans have a long history with the spineless gene. Their interest has been in the role spineless plays in directing development of the antenna, Drosophila’s primary olfactory organ. Years ago, they deleted the spineless gene and found that the mutants then produced a leg instead of an antenna.

"Spineless plays a key role in the antenna and maxillary palp, the two major olfactory organs of the fly," said Ian Duncan. "It’s also important in mechanosensory bristles and in the taste receptors of the legs, wings, and mouth parts. There has been a sensory theme to the gene, and now we learn from Claude’s work that it plays a key role in color vision."

In humans the closest known homolog (counterpart) is the arylhydrocarbon (’dioxin’) receptor, a key protein in human health that senses a wide variety of synthetic compounds and then activates expression of detoxification genes. The dioxin receptor is studied closely in cancer biology and toxicology.

Recently, the Duncans had found a relationship between spineless and a gene called homothorax. Desplan’s group had shown that homothorax plays an important role in the Drosophila eye, and after hearing Ian Duncan make a presentation on the homothorax-spineless relationship in the antenna, the Desplan laboratory decided to study spineless in the eye.

The collaborators published their results in the March 9, 2006 issue of Nature.

Random pattern

The Drosophila retina is comprised of clusters of photosensitive cells called ommatidia. Two types of ommatidia are present: one is sensitive to long-wave light and the other to short-wave light. This difference is due to the expression of different light-sensitive pigments (rhodopsins) in the two central photoreceptor cells (R7 and R8) of each ommatidial cluster. Spineless determines the long-wave type by activating expression of rhodopsin-4 in R7 cells. In ommatidia where spineless is not expressed, R7 expresses the short-wave sensitive rhodopsin-3.

"The fascinating thing in this work is that the longer wave length sensitive ommatidia are randomly positioned," said Duncan. "About 70 percent of the ommatidia sense longer wavelength and 30 percent sense short-wave length. It’s been a mystery how you generate a random pattern like that and still have that ratio."

Using the tools that the Duncan laboratory provided, Desplan’s group mapped the regulatory region in the spineless gene that drives the random pattern mechanism.

"Nobody knew what controlled this random pattern," said Dianne Duncan. "Now we know it’s spineless. We’ve known for a while that spineless has several sensory functions and we thought it might be a bit underrated in developmental biology. Now we add color vision to its duties."

Spineless also appears to control communication between the R7 and R8 photoreceptors. "It has been known for some time that the expression of rhodopsin genes in R7 and R8 is coupled with the particular genes expressed in R8 being determined by the adjacent R7 cells," said Ian Duncan.

"An additional important finding in the paper is that spineless controls this signaling between R7 and R8."

Link to human odor perception

The Duncans will continue to look for other genes that spineless controls in making an antenna. They have shown that spineless acts together with two other factors, Homothorax and Distalless, and identified downstream target genes by virtue of their having clustered binding sites for these factors. And they are looking into similarities between spineless and the mammalian dioxin receptor. In a collaboration with a University of Wisconsin researcher, they have put the mammalian dioxin receptor gene into Drosophila, where, surprisingly, it specifies the making of an antenna.

"When you think about it, the antenna is quite special," Dianne Duncan said. "It contains many proteins not expressed anywhere else in the fly. These include many odor receptor proteins that are expressed in subsets of cells within the antenna. Our hope is that by unraveling how development of the Drosophila antenna is controlled, we will gain important insights into how human odor perception works."

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>