Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One gene provides fruit fly both antenna and color vision

06.04.2006
Brilliant reception

A team of researchers that includes biologists from Washington University in St. Louis has discovered that a gene involved in the development and function of the fruit fly antenna also gives the organism its color vision.


Pretty fly - for a fruit fly. The areas stained blue are regions in the fruit fly where the spineless gene is expressed. WUSTL biologists Ian and Dianne Duncan have spent years making discoveries of how the gene is involved in making the fruit fly antenna. Now they are part of a team that has found that spineless plays a key role in the organism’s color vision.

Claude Desplan, Ph.D., professor of biology at New York University, and his students made the discovery and provided the data. Ian Duncan, Washington University professor of biology, and his wife, research assistant Dianne Duncan, provided the Desplan laboratory fruit fly (Drosophila) clones and mutants and technical assistance that helped locate where the gene, called spineless, is expressed in the retina.

The Duncans have a long history with the spineless gene. Their interest has been in the role spineless plays in directing development of the antenna, Drosophila’s primary olfactory organ. Years ago, they deleted the spineless gene and found that the mutants then produced a leg instead of an antenna.

"Spineless plays a key role in the antenna and maxillary palp, the two major olfactory organs of the fly," said Ian Duncan. "It’s also important in mechanosensory bristles and in the taste receptors of the legs, wings, and mouth parts. There has been a sensory theme to the gene, and now we learn from Claude’s work that it plays a key role in color vision."

In humans the closest known homolog (counterpart) is the arylhydrocarbon (’dioxin’) receptor, a key protein in human health that senses a wide variety of synthetic compounds and then activates expression of detoxification genes. The dioxin receptor is studied closely in cancer biology and toxicology.

Recently, the Duncans had found a relationship between spineless and a gene called homothorax. Desplan’s group had shown that homothorax plays an important role in the Drosophila eye, and after hearing Ian Duncan make a presentation on the homothorax-spineless relationship in the antenna, the Desplan laboratory decided to study spineless in the eye.

The collaborators published their results in the March 9, 2006 issue of Nature.

Random pattern

The Drosophila retina is comprised of clusters of photosensitive cells called ommatidia. Two types of ommatidia are present: one is sensitive to long-wave light and the other to short-wave light. This difference is due to the expression of different light-sensitive pigments (rhodopsins) in the two central photoreceptor cells (R7 and R8) of each ommatidial cluster. Spineless determines the long-wave type by activating expression of rhodopsin-4 in R7 cells. In ommatidia where spineless is not expressed, R7 expresses the short-wave sensitive rhodopsin-3.

"The fascinating thing in this work is that the longer wave length sensitive ommatidia are randomly positioned," said Duncan. "About 70 percent of the ommatidia sense longer wavelength and 30 percent sense short-wave length. It’s been a mystery how you generate a random pattern like that and still have that ratio."

Using the tools that the Duncan laboratory provided, Desplan’s group mapped the regulatory region in the spineless gene that drives the random pattern mechanism.

"Nobody knew what controlled this random pattern," said Dianne Duncan. "Now we know it’s spineless. We’ve known for a while that spineless has several sensory functions and we thought it might be a bit underrated in developmental biology. Now we add color vision to its duties."

Spineless also appears to control communication between the R7 and R8 photoreceptors. "It has been known for some time that the expression of rhodopsin genes in R7 and R8 is coupled with the particular genes expressed in R8 being determined by the adjacent R7 cells," said Ian Duncan.

"An additional important finding in the paper is that spineless controls this signaling between R7 and R8."

Link to human odor perception

The Duncans will continue to look for other genes that spineless controls in making an antenna. They have shown that spineless acts together with two other factors, Homothorax and Distalless, and identified downstream target genes by virtue of their having clustered binding sites for these factors. And they are looking into similarities between spineless and the mammalian dioxin receptor. In a collaboration with a University of Wisconsin researcher, they have put the mammalian dioxin receptor gene into Drosophila, where, surprisingly, it specifies the making of an antenna.

"When you think about it, the antenna is quite special," Dianne Duncan said. "It contains many proteins not expressed anywhere else in the fly. These include many odor receptor proteins that are expressed in subsets of cells within the antenna. Our hope is that by unraveling how development of the Drosophila antenna is controlled, we will gain important insights into how human odor perception works."

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>