Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers probe enzyme that may lead to new SARS drugs

06.04.2006
Researchers at the University of Illinois at Chicago and two other institutions have unraveled the structure of an important new drug target from the virus that causes SARS, severe acute respiratory syndrome.

"By unlocking the three-dimensional structure of this enzyme -- known as papain-like-protease (PLpro) -- we now have a molecular road map to design new drugs that could potentially treat SARS-infected patients, or perhaps patients suffering from other SARS-related illnesses such as the common cold, bronchitis or pneumonia," said Andrew Mesecar, associate professor of pharmaceutical biotechnology in the UIC College of Pharmacy. "We are attempting to use the same approach that has been accomplished in designing effective drugs against HIV protease, which has led to the development of new drugs to fight the AIDS virus."

The research is published in the March 27 issue of the Proceedings of the National Academy of Sciences.

Mesecar said that the knowledge gained from this new atomic structure -- the first-ever reported on this class of proteases -- has the potential to go beyond the treatment of patients infected with the coronavirus that causes SARS.

Coronaviruses, which produce upper respiratory tract infections, were discovered in the late 1960s. The viruses are responsible for 10 percent to 30 percent of all common colds. Recently, two new coronaviruses -- NL63 and HKU1 -- were found to cause many cases of severe pneumonia in children and the elderly throughout the world, he said.

"NL63 and HKU1 infections are severe and often lead to hospitalization," Mesecar said. "It is believed these viruses have been around a long time, but only recently have we developed the technology to identify and detect them. The SARS outbreak and quick response of the scientific community has led to the rapid development of such technology."

SARS was first reported in Asia in early 2003. Over the next several months the illness spread to more than 29 countries in North and South America, Europe and Asia before it was contained. It begins with a high fever, headache and body aches. About 10 percent to 20 percent of patients have diarrhea, and after two to seven days, a dry cough may develop. Most patients develop pneumonia. The infection spreads by close personal contact, often through coughing or sneezing.

According to the World Health Organization, 8,098 people worldwide were diagnosed with SARS during the 2003 outbreak; 774 died. There were 29 cases reported in the United States, with no fatalities.

The papain-like-protease enzyme is essential for viral replication and infection of all of the coronaviruses involved in upper respiratory infections. Eliminating the enzyme should stop the infection, Mesecar said.

During the UIC study, graduate student Kiira Ratia, a member of Mesecar’s research team, used X-ray crystallography, a technique that involves bombarding a crystalline form of the enzyme with an intense beam of X-rays that are bent by atoms in the molecules to unlock the details of the molecular structure. The X-ray studies were conducted at Argonne National Laboratory’s Advanced Photon Source.

As the X-rays leave the crystal, a unique pattern is created on an ultra-high resolution charge-coupled device camera, a sensor for recording images often used in digital photography and astronomy. The images were then interpreted by computer to reconstruct the positions of all the component atoms.

"We have already discovered compounds that can bind to these pockets and inhibit the activity of this enzyme," Mesecar said. "We have made remarkable progress in a short period of time in generating lead drug-like compounds against the enzyme."

Sam Hostettler | EurekAlert!
Further information:
http://www.uic.edu

More articles from Life Sciences:

nachricht Polymers Based on Boron?
18.01.2018 | Julius-Maximilians-Universität Würzburg

nachricht Bioengineered soft microfibers improve T-cell production
18.01.2018 | Columbia University School of Engineering and Applied Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>