Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers probe enzyme that may lead to new SARS drugs

06.04.2006
Researchers at the University of Illinois at Chicago and two other institutions have unraveled the structure of an important new drug target from the virus that causes SARS, severe acute respiratory syndrome.

"By unlocking the three-dimensional structure of this enzyme -- known as papain-like-protease (PLpro) -- we now have a molecular road map to design new drugs that could potentially treat SARS-infected patients, or perhaps patients suffering from other SARS-related illnesses such as the common cold, bronchitis or pneumonia," said Andrew Mesecar, associate professor of pharmaceutical biotechnology in the UIC College of Pharmacy. "We are attempting to use the same approach that has been accomplished in designing effective drugs against HIV protease, which has led to the development of new drugs to fight the AIDS virus."

The research is published in the March 27 issue of the Proceedings of the National Academy of Sciences.

Mesecar said that the knowledge gained from this new atomic structure -- the first-ever reported on this class of proteases -- has the potential to go beyond the treatment of patients infected with the coronavirus that causes SARS.

Coronaviruses, which produce upper respiratory tract infections, were discovered in the late 1960s. The viruses are responsible for 10 percent to 30 percent of all common colds. Recently, two new coronaviruses -- NL63 and HKU1 -- were found to cause many cases of severe pneumonia in children and the elderly throughout the world, he said.

"NL63 and HKU1 infections are severe and often lead to hospitalization," Mesecar said. "It is believed these viruses have been around a long time, but only recently have we developed the technology to identify and detect them. The SARS outbreak and quick response of the scientific community has led to the rapid development of such technology."

SARS was first reported in Asia in early 2003. Over the next several months the illness spread to more than 29 countries in North and South America, Europe and Asia before it was contained. It begins with a high fever, headache and body aches. About 10 percent to 20 percent of patients have diarrhea, and after two to seven days, a dry cough may develop. Most patients develop pneumonia. The infection spreads by close personal contact, often through coughing or sneezing.

According to the World Health Organization, 8,098 people worldwide were diagnosed with SARS during the 2003 outbreak; 774 died. There were 29 cases reported in the United States, with no fatalities.

The papain-like-protease enzyme is essential for viral replication and infection of all of the coronaviruses involved in upper respiratory infections. Eliminating the enzyme should stop the infection, Mesecar said.

During the UIC study, graduate student Kiira Ratia, a member of Mesecar’s research team, used X-ray crystallography, a technique that involves bombarding a crystalline form of the enzyme with an intense beam of X-rays that are bent by atoms in the molecules to unlock the details of the molecular structure. The X-ray studies were conducted at Argonne National Laboratory’s Advanced Photon Source.

As the X-rays leave the crystal, a unique pattern is created on an ultra-high resolution charge-coupled device camera, a sensor for recording images often used in digital photography and astronomy. The images were then interpreted by computer to reconstruct the positions of all the component atoms.

"We have already discovered compounds that can bind to these pockets and inhibit the activity of this enzyme," Mesecar said. "We have made remarkable progress in a short period of time in generating lead drug-like compounds against the enzyme."

Sam Hostettler | EurekAlert!
Further information:
http://www.uic.edu

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>