Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers probe enzyme that may lead to new SARS drugs

06.04.2006
Researchers at the University of Illinois at Chicago and two other institutions have unraveled the structure of an important new drug target from the virus that causes SARS, severe acute respiratory syndrome.

"By unlocking the three-dimensional structure of this enzyme -- known as papain-like-protease (PLpro) -- we now have a molecular road map to design new drugs that could potentially treat SARS-infected patients, or perhaps patients suffering from other SARS-related illnesses such as the common cold, bronchitis or pneumonia," said Andrew Mesecar, associate professor of pharmaceutical biotechnology in the UIC College of Pharmacy. "We are attempting to use the same approach that has been accomplished in designing effective drugs against HIV protease, which has led to the development of new drugs to fight the AIDS virus."

The research is published in the March 27 issue of the Proceedings of the National Academy of Sciences.

Mesecar said that the knowledge gained from this new atomic structure -- the first-ever reported on this class of proteases -- has the potential to go beyond the treatment of patients infected with the coronavirus that causes SARS.

Coronaviruses, which produce upper respiratory tract infections, were discovered in the late 1960s. The viruses are responsible for 10 percent to 30 percent of all common colds. Recently, two new coronaviruses -- NL63 and HKU1 -- were found to cause many cases of severe pneumonia in children and the elderly throughout the world, he said.

"NL63 and HKU1 infections are severe and often lead to hospitalization," Mesecar said. "It is believed these viruses have been around a long time, but only recently have we developed the technology to identify and detect them. The SARS outbreak and quick response of the scientific community has led to the rapid development of such technology."

SARS was first reported in Asia in early 2003. Over the next several months the illness spread to more than 29 countries in North and South America, Europe and Asia before it was contained. It begins with a high fever, headache and body aches. About 10 percent to 20 percent of patients have diarrhea, and after two to seven days, a dry cough may develop. Most patients develop pneumonia. The infection spreads by close personal contact, often through coughing or sneezing.

According to the World Health Organization, 8,098 people worldwide were diagnosed with SARS during the 2003 outbreak; 774 died. There were 29 cases reported in the United States, with no fatalities.

The papain-like-protease enzyme is essential for viral replication and infection of all of the coronaviruses involved in upper respiratory infections. Eliminating the enzyme should stop the infection, Mesecar said.

During the UIC study, graduate student Kiira Ratia, a member of Mesecar’s research team, used X-ray crystallography, a technique that involves bombarding a crystalline form of the enzyme with an intense beam of X-rays that are bent by atoms in the molecules to unlock the details of the molecular structure. The X-ray studies were conducted at Argonne National Laboratory’s Advanced Photon Source.

As the X-rays leave the crystal, a unique pattern is created on an ultra-high resolution charge-coupled device camera, a sensor for recording images often used in digital photography and astronomy. The images were then interpreted by computer to reconstruct the positions of all the component atoms.

"We have already discovered compounds that can bind to these pockets and inhibit the activity of this enzyme," Mesecar said. "We have made remarkable progress in a short period of time in generating lead drug-like compounds against the enzyme."

Sam Hostettler | EurekAlert!
Further information:
http://www.uic.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>