Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers uncover genetic signature that predicts colon cancer

05.04.2006
Researchers at Jefferson Medical College in Philadelphia have uncovered a genetic "signature" that accurately identifies colon cancer--a key, they hope, to better understand how the cancer develops.

Colon cancer may begin when processes that regulate adult stem cells in the colon go awry. A handful of stem cells lie in the bottom of tiny tube-like "crypts" in the epithelium (or lining) of the colon. Stem cells produce daughter cells that proliferate, eventually making their way to the top of the crypt, where they become specialized colon cells. Simply put, mutations in the stem cells lead to mutant daughter cells and cancer.

To try to understand some of these processes, Bruce Boman, M.D., Ph.D., director of the Division of Genetic and Preventive Medicine at Jefferson Medical College of Thomas Jefferson University and at Jefferson’s Kimmel Cancer Center, and his co-workers used a microarray chip to analyze the expression of microRNAs (miRNAs). MiRNAs are tiny pieces of genetic material discovered in recent years that are thought to be important in regulating gene expression and in the development of cancer. The chip carried complementary genetic "probes" for most of the known miRNAs in human and mouse.

The researchers first compared miRNA expression in the bottom tenth of normal colon crypts, which is where stem cells are located, to the other nine-tenths of the crypt, where daughter cells were proliferating. This approach was designed to tell the difference between stem cell and non-stem cell activity.

They also examined miRNA gene expression in colon cancer tissue, finding changes in expression between normal tissue and cancer. More specifically, they found a pattern of 16 miRNA genes that characterizes the crypt bottom. The pattern accurately predicted which colon tissues were normal and which were cancerous.

Dr. Boman, professor of medicine and director of Jefferson’s Hereditary Cancer Center and Gastrointestinal Cancer Program at Jefferson’s Kimmel Cancer Center, presents the team’s findings April 4, 2006 at the annual meeting of the American Association for Cancer Research in Washington, D.C.

"This will not only give us insights into how tissue dynamics are regulated in normal colonic epithelium, but also in the development of cancer as well, where the normal steady state is disrupted," he says. "It might also help us better understand the stem cell origin of colon cancer.

"If a miRNA is binding to a gene product that is key to differentiation of a cell, and the miRNA is lost, maybe that cell won’t be able to undergo differentiation and will become a cancer cell," he says. "We’re now looking at the gene targets for the specific miRNAs.

"The exciting part," notes Dr. Boman, "is that by figuring out which of these molecules are lost in cancer, they can theoretically be replaced. This could have tremendous potential for the development of new drugs."

Steve Benowitz | EurekAlert!
Further information:
http://www.jefferson.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>