Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers uncover genetic signature that predicts colon cancer

05.04.2006
Researchers at Jefferson Medical College in Philadelphia have uncovered a genetic "signature" that accurately identifies colon cancer--a key, they hope, to better understand how the cancer develops.

Colon cancer may begin when processes that regulate adult stem cells in the colon go awry. A handful of stem cells lie in the bottom of tiny tube-like "crypts" in the epithelium (or lining) of the colon. Stem cells produce daughter cells that proliferate, eventually making their way to the top of the crypt, where they become specialized colon cells. Simply put, mutations in the stem cells lead to mutant daughter cells and cancer.

To try to understand some of these processes, Bruce Boman, M.D., Ph.D., director of the Division of Genetic and Preventive Medicine at Jefferson Medical College of Thomas Jefferson University and at Jefferson’s Kimmel Cancer Center, and his co-workers used a microarray chip to analyze the expression of microRNAs (miRNAs). MiRNAs are tiny pieces of genetic material discovered in recent years that are thought to be important in regulating gene expression and in the development of cancer. The chip carried complementary genetic "probes" for most of the known miRNAs in human and mouse.

The researchers first compared miRNA expression in the bottom tenth of normal colon crypts, which is where stem cells are located, to the other nine-tenths of the crypt, where daughter cells were proliferating. This approach was designed to tell the difference between stem cell and non-stem cell activity.

They also examined miRNA gene expression in colon cancer tissue, finding changes in expression between normal tissue and cancer. More specifically, they found a pattern of 16 miRNA genes that characterizes the crypt bottom. The pattern accurately predicted which colon tissues were normal and which were cancerous.

Dr. Boman, professor of medicine and director of Jefferson’s Hereditary Cancer Center and Gastrointestinal Cancer Program at Jefferson’s Kimmel Cancer Center, presents the team’s findings April 4, 2006 at the annual meeting of the American Association for Cancer Research in Washington, D.C.

"This will not only give us insights into how tissue dynamics are regulated in normal colonic epithelium, but also in the development of cancer as well, where the normal steady state is disrupted," he says. "It might also help us better understand the stem cell origin of colon cancer.

"If a miRNA is binding to a gene product that is key to differentiation of a cell, and the miRNA is lost, maybe that cell won’t be able to undergo differentiation and will become a cancer cell," he says. "We’re now looking at the gene targets for the specific miRNAs.

"The exciting part," notes Dr. Boman, "is that by figuring out which of these molecules are lost in cancer, they can theoretically be replaced. This could have tremendous potential for the development of new drugs."

Steve Benowitz | EurekAlert!
Further information:
http://www.jefferson.edu

More articles from Life Sciences:

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

nachricht UK chemistry researchers develop catalyst that mimics the z-scheme of photosynthesis
26.06.2017 | University of Kentucky

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Dune ecosystem modelling

26.06.2017 | Ecology, The Environment and Conservation

Insights into closed enzymes

26.06.2017 | Life Sciences

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>