Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers uncover genetic signature that predicts colon cancer

05.04.2006
Researchers at Jefferson Medical College in Philadelphia have uncovered a genetic "signature" that accurately identifies colon cancer--a key, they hope, to better understand how the cancer develops.

Colon cancer may begin when processes that regulate adult stem cells in the colon go awry. A handful of stem cells lie in the bottom of tiny tube-like "crypts" in the epithelium (or lining) of the colon. Stem cells produce daughter cells that proliferate, eventually making their way to the top of the crypt, where they become specialized colon cells. Simply put, mutations in the stem cells lead to mutant daughter cells and cancer.

To try to understand some of these processes, Bruce Boman, M.D., Ph.D., director of the Division of Genetic and Preventive Medicine at Jefferson Medical College of Thomas Jefferson University and at Jefferson’s Kimmel Cancer Center, and his co-workers used a microarray chip to analyze the expression of microRNAs (miRNAs). MiRNAs are tiny pieces of genetic material discovered in recent years that are thought to be important in regulating gene expression and in the development of cancer. The chip carried complementary genetic "probes" for most of the known miRNAs in human and mouse.

The researchers first compared miRNA expression in the bottom tenth of normal colon crypts, which is where stem cells are located, to the other nine-tenths of the crypt, where daughter cells were proliferating. This approach was designed to tell the difference between stem cell and non-stem cell activity.

They also examined miRNA gene expression in colon cancer tissue, finding changes in expression between normal tissue and cancer. More specifically, they found a pattern of 16 miRNA genes that characterizes the crypt bottom. The pattern accurately predicted which colon tissues were normal and which were cancerous.

Dr. Boman, professor of medicine and director of Jefferson’s Hereditary Cancer Center and Gastrointestinal Cancer Program at Jefferson’s Kimmel Cancer Center, presents the team’s findings April 4, 2006 at the annual meeting of the American Association for Cancer Research in Washington, D.C.

"This will not only give us insights into how tissue dynamics are regulated in normal colonic epithelium, but also in the development of cancer as well, where the normal steady state is disrupted," he says. "It might also help us better understand the stem cell origin of colon cancer.

"If a miRNA is binding to a gene product that is key to differentiation of a cell, and the miRNA is lost, maybe that cell won’t be able to undergo differentiation and will become a cancer cell," he says. "We’re now looking at the gene targets for the specific miRNAs.

"The exciting part," notes Dr. Boman, "is that by figuring out which of these molecules are lost in cancer, they can theoretically be replaced. This could have tremendous potential for the development of new drugs."

Steve Benowitz | EurekAlert!
Further information:
http://www.jefferson.edu

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>