Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Gene mutation causes lethally low-fat diet

We are all familiar with the dangers of too much fat in our diet--increased risk of diabetes, heart disease, and obesity are just a few of the most severe consequences.

But some rare metabolic diseases, such as hypolipidemia and Tangier disease, seem to work in reverse--they severely limit the amount of fat and cholesterol that makes it into the bloodstream. Researchers from the Carnegie Institution and the University of Pennsylvania have found a specific gene that could be responsible for such conditions; when the gene is disrupted, so is the ability to absorb lipids (fatty substances that include cholesterol) through the intestine.

Zebrafish larvae with a lethal mutation affecting fat metabolism (ffr) look the same as normal larvaes (wt) under normal magnification (left). However, when the embryos ingest lipid molecules labeled with...

In their latest research, published in the April 4 issue of the journal Cell Metabolism, Steve Farber of Carnegie’s Department of Embryology and Michael Pack, of the University of Pennsylvania School of Medicine describe their efforts to locate a gene called fat free within the genome of the zebrafish. These fish have become popular research organisms because their embryos are transparent, allowing studies that are not possible with traditional model organisms, such as mice and rats. Farber and Pack found that, despite the distant evolutionary relation between humans and zebrafish, the fat free gene in zebrafish is quite similar to a pair of human genes.

The researchers also explore the physical effects of a specific mutation of the gene, seeking to explain why larval fish with the mutation exhibit an impaired ability to absorb cholesterol. These fish die when they are about a one-and-a-half weeks old because of this defect, even though they look normal and swallow properly.

"There is a lot we still don’t know about how animals absorb, transport, and otherwise manage lipids," Farber said. "The fact that just one gene can have such a huge effect is encouraging, because it might reveal a means for treatment of human disease."

The scientists began by looking for structural defects in the mutants’ digestive organs. Their livers have abnormalities in the cells and ducts that produce bile--a salty, somewhat soapy fluid that helps lipid digestion. Certain pancreatic cells are also flawed, interfering with the production of digestive enzymes necessary for the breakdown of complex lipid molecules.

More importantly, the mutants also have defects in the cells that line the intestine, where fat and cholesterol absorption takes place. Normally, globules of lipid pass into these cells in small sacs called vesicles. These vesicles connect with the Golgi apparatus, a labyrinth of membranes filled with enzymes that modify the fats, and then new vesicles transport the fats out of the cell and into the bloodstream. The researchers found that this process is disrupted in the fat free mutants, preventing fats from reaching the bloodstream, and thereby depriving the animal of needed lipids.

Farber and Pack used a strategy called positional cloning both to locate fat free in the zebrafish genome and to determine its sequence. They found that the gene shares 75 percent of its sequence with a human gene called ANG2 (Another New Gene 2), which up to this time has had no known function. It also shares parts of its sequence with a gene called COG8, which is known to affect the Golgi apparatus. They also found that a change in only one base--one "letter" in the DNA code--results in the lethal mutation in zebrafish.

"This gene is absolutely necessary for cholesterol absorption--without it, the animals die," Farber said. This is encouraging for Pack, a physician-scientist in Penn’s Department of Medicine, "If we can understand this process in zebrafish, perhaps we can take what we learn and apply it to similar genes in humans, which could in turn lead to treatment for lipid metabolism disorders."

Dr. Steven Farber | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Microbe hunters discover long-sought-after iron-munching microbe
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Seeking balanced networks: how neurons adjust their proteins during homeostatic scaling.
24.10.2016 | Max-Planck-Institut für Hirnforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Seeking balanced networks: how neurons adjust their proteins during homeostatic scaling.

24.10.2016 | Life Sciences

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

More VideoLinks >>>