Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Another gene rearrangement involved in prostate cancer identified

05.04.2006
Researchers at the University of Michigan Medical School have identified a third gene involved in prostate cancer, expanding their groundbreaking announcement, published last October in Science, that the majority of prostate cancers carry a malignancy-inducing fusion of genes never before seen in solid tumors.

The new findings appear in the April 1 issue of Cancer Research. Since prostate cancer is a cancer of the epithelial cells lining organs, lead researcher Arul Chinnaiyan and his colleagues believe it likely that other gene re-arrangements may be responsible for other cancers of epithelial tissue, including breast, colon and lung.

Scott Tomlins, a MD/PhD graduate student in Dr. Chinnaiyan’s laboratory and the lead author of the Science paper, presented the study Tuesday, April 4, at Experimental Biology 2006 in San Francisco. The presentation was part of the scientific program of the American Society for Investigative Pathology (ASIP) held at Experimental Biology, and Mr. Tomlins is the winner of the 2006 ASIP Experimental Pathologist-in-Training Award.

The ETV4 gene is a member of the same family as the two other genes, ETV1 and ERG, reported earlier. All three are ETS genes, a group of approximately 30 genes that encode related transcription factors. Like other family members, ETV4 has a role in normal cell division but is unusually active, or overly expressive, only when it becomes fused with other genes on different chromosomes. Using the same technology as the earlier study, the scientists were able to demonstrate that the ETV4 gene had become fused with another prostate cancer gene on another chromosome.

But the new ETV4 gene has two important differences from the ETV1 and ERG genes. First, while not overexpressed in individuals without prostate cancer, ETV4 is overexpressed in a much smaller fraction of patients with prostate cancer than the malignancy-causing genes described earlier. Second, the over-expressed ETV4 gene appeared in two prostate cancer patients in whom the ETV1 and ERG genes were not overexpressed, suggesting that fusions involving any of the three family members may lead to prostate cancer.

This finding confirms the importance of the ETS gene pathway in causing prostate cancer, say Chinnaiyan and Tomlins. The scientists believe fusions involving these three genes probably account for the majority of prostate cancers.

Citing the power of modern technology, including large gene databases (this study mined the Oncomine database, created by the Chinnaiyan laboratory, for ETS expression in two studies, one from the Chinnaiyan laboratory and the other from Stanford University), bioinformatics approaches that allow the rapid processing of previously unimaginable amounts of information, and an algorithm also created in the Chinnaiyan laboratory, the scientists will continue to look at other components of the ETS pathway, including genes that may get turned on inappropriately but may not be able to be detected through over-expression. Dr. Chinnaiyan also has plans to look for similar gene rearrangements in other solid tumors such as breast cancer.

Sylvia Wrobel | EurekAlert!
Further information:
http://www.faseb.org/

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>