Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Good news for athletes from Hebrew University: stem cells can repair torn tendons or ligaments

05.04.2006
Weekend athletes who overexert themselves running or playing basketball may one day reap the benefits of research at the Hebrew University of Jerusalem that shows that adult stem cells can be used to make new tendon or ligament tissue.

Tendon and ligament injuries present a major clinical challenge to orthopedic medicine. In the United States, at least 200,000 patients undergo tendon or ligament repair each year. Moreover, the intervertebral disc, which is composed in part of tendon-like tissue, tends to degenerate with age, leading to the very common phenomenon of low-back pain affecting a major part of the population.

Until the present time, therapeutic options used to repair torn ligaments and tendons have consisted of tissue grafting and synthetic prostheses, but as yet, none of these alternatives has provided a successful long-term solution.

A novel approach for tendon regeneration is reported in the April issue of the Journal of Clinical Investigation. Researchers Prof. Dan Gazit and colleagues at the Skeletal Biotechnology Laboratory at the Hebrew University Faculty of Dental Medicine engineered mesenchymal stem cells (MSCs), which reside in the bone marrow and fat tissues, to express a protein called Smad8 and another called BMP2.

When the researchers implanted these cells into torn Achilles tendons of rats they found that the cells not only survived the implantation process, but also were recruited to the site of the injury and were able to repair the tendon. The cells changed their appearance to look more like tendon cells (tenocytes), and significantly increased production of collagen, a protein critical for creating strong yet flexible tendons and ligaments.

Tendon tissue repair was detected using a special type of imaging known as proton DQF MRI, developed by Prof. Gil Navon at Tel Aviv University, which recognizes differences among collagen-containing tissue such as tendon, bone, skin, and muscle. The authors note that BMP and Smad proteins are involved in other tissues such as nerve and liver, suggesting that this type of delivery technology may be helpful for other degenerative diseases.

In an accompanying commentary in the Journal of Clinical Investigation, Dwight A. Towler and Richard Gelberman from the Washington University School of Medicine in St. Louis, Missouri, state, “Given our limited understanding of how MSCs become tenocytes, the recent progress demonstrated in these studies is quite remarkable and may be potentially useful in cell-based therapeutic approaches to musculoskeletal injuries.”

The study was supported by GENOSTEM, an integrated project of the European Union for the engineering of mesenchymal stem cells in connective tissue disorders.

Jerry Barach | alfa
Further information:
http://www.huji.ac.il

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>