Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Good news for athletes from Hebrew University: stem cells can repair torn tendons or ligaments

05.04.2006
Weekend athletes who overexert themselves running or playing basketball may one day reap the benefits of research at the Hebrew University of Jerusalem that shows that adult stem cells can be used to make new tendon or ligament tissue.

Tendon and ligament injuries present a major clinical challenge to orthopedic medicine. In the United States, at least 200,000 patients undergo tendon or ligament repair each year. Moreover, the intervertebral disc, which is composed in part of tendon-like tissue, tends to degenerate with age, leading to the very common phenomenon of low-back pain affecting a major part of the population.

Until the present time, therapeutic options used to repair torn ligaments and tendons have consisted of tissue grafting and synthetic prostheses, but as yet, none of these alternatives has provided a successful long-term solution.

A novel approach for tendon regeneration is reported in the April issue of the Journal of Clinical Investigation. Researchers Prof. Dan Gazit and colleagues at the Skeletal Biotechnology Laboratory at the Hebrew University Faculty of Dental Medicine engineered mesenchymal stem cells (MSCs), which reside in the bone marrow and fat tissues, to express a protein called Smad8 and another called BMP2.

When the researchers implanted these cells into torn Achilles tendons of rats they found that the cells not only survived the implantation process, but also were recruited to the site of the injury and were able to repair the tendon. The cells changed their appearance to look more like tendon cells (tenocytes), and significantly increased production of collagen, a protein critical for creating strong yet flexible tendons and ligaments.

Tendon tissue repair was detected using a special type of imaging known as proton DQF MRI, developed by Prof. Gil Navon at Tel Aviv University, which recognizes differences among collagen-containing tissue such as tendon, bone, skin, and muscle. The authors note that BMP and Smad proteins are involved in other tissues such as nerve and liver, suggesting that this type of delivery technology may be helpful for other degenerative diseases.

In an accompanying commentary in the Journal of Clinical Investigation, Dwight A. Towler and Richard Gelberman from the Washington University School of Medicine in St. Louis, Missouri, state, “Given our limited understanding of how MSCs become tenocytes, the recent progress demonstrated in these studies is quite remarkable and may be potentially useful in cell-based therapeutic approaches to musculoskeletal injuries.”

The study was supported by GENOSTEM, an integrated project of the European Union for the engineering of mesenchymal stem cells in connective tissue disorders.

Jerry Barach | alfa
Further information:
http://www.huji.ac.il

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>