Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Birdsong sounds sweeter because throats filter out messy overtones

The purity of birdsong is owed in large part to rapid, controlled changes in the shape of the birds’ upper vocal tracts, according to a new study of Northern Cardinals by scientists at Indiana University Bloomington, Purdue University and Australian National University. Their report will appear in next week’s (April 4) Proceedings of the National Academy of Sciences.
"We show that songbirds adjust the size and shape of their vocal tract to ’fit’ the changing frequency of their song," IU neurobiologist Roderick Suthers said. "This enables the bird to produce a more whistle-like, pure-tone song."

The finding supports a growing consensus that birds and humans make sound in much the same way -- although it is presumed these processes evolved independently of each other in birds and hominids. In 2004, Suthers reported in the journal Current Biology that monk parakeets use their tongues to shape sound. Other studies have implicated beaks, especially beak gape, in shaping the sound that birds produce. Similarly, humans move their tongues, alter the shape of their upper vocal tracts, and change the shape of their mouths when they sing, laugh, talk and groan.

"The bird’s vocal tract, like the human vocal tract in speech, acts as a resonance filter that can control the sound coming from the mouth," Suthers said. "Beak movements during song also contribute to this filter, but are not as important as changes in the size of the internal vocal tract. Human sopranos use the same technique as the cardinal to increase the loudness of very high notes so they can be heard above the orchestra."

That birds’ throats vibrate when they sing will come as no surprise to birdwatchers. The effect of these oscillations on the birds’ sound production, however, was unknown.

The acoustics of sound-making are complicated. Most tones produced in nature are accompanied by a complex series of higher-pitched, quieter tones called overtones. When the loudness of these overtones is high, the tone sounds more complex. Birds can control the loudness of overtones to increase the tonal purity of their song. Humans use a similar technique to produce different vowel sounds of speech by altering the shapes of their throats, the positions of their tongues and the wideness of their mouths. The PNAS study reveals yet another parallel between birdsong production and human speech.

"At low frequencies, the bird increases the volume of its oropharyngeal cavity and even expands the top of its esophagus," Suthers said. "These air-filled structures form a single cavity with a resonant frequency that matches the main frequency of the song. This amplifies the fundamental frequency and suppresses overtones."

Suthers, biologist Tobias Riede, who is now at the National Center for Voice and Speech (Colorado), Purdue University veterinary scientist William Blevins, and Australian National University acoustic physicist Neville Fletcher used X-ray cinematography to observe and measure the shape and total volume (three-dimensional space, not loudness) of a cardinal’s throat as it spontaneously sang. Explanatory video can be downloaded here: (10 megs) (4 megs)
(Modeling and animation by Eric Wernert, IU University Information Technology Services Advanced Visualization Lab)

The scientists determined that note changes in birdsong are accompanied by controlled changes in the volume of the upper esophagus as well as the positions of the bird’s larynx and hyoid skeleton (a U-shaped bone formation in the bird’s throat). They also found that the volume of the upper esophagus goes up whenever the main tone produced by the bird goes down, and vice versa. These alterations of shape have the effect of increasing the main tone and suppressing the loudness of overtones.

David Bricker | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Mitochondria control stem cell fate
27.10.2016 | Technische Universität München

nachricht How a fungus inhibits the immune system of plants
27.10.2016 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

The gene of autumn colours

27.10.2016 | Life Sciences

Polymer scaffolds build a better pill to swallow

27.10.2016 | Life Sciences

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>