Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Birdsong sounds sweeter because throats filter out messy overtones

04.04.2006
The purity of birdsong is owed in large part to rapid, controlled changes in the shape of the birds’ upper vocal tracts, according to a new study of Northern Cardinals by scientists at Indiana University Bloomington, Purdue University and Australian National University. Their report will appear in next week’s (April 4) Proceedings of the National Academy of Sciences.
"We show that songbirds adjust the size and shape of their vocal tract to ’fit’ the changing frequency of their song," IU neurobiologist Roderick Suthers said. "This enables the bird to produce a more whistle-like, pure-tone song."

The finding supports a growing consensus that birds and humans make sound in much the same way -- although it is presumed these processes evolved independently of each other in birds and hominids. In 2004, Suthers reported in the journal Current Biology that monk parakeets use their tongues to shape sound. Other studies have implicated beaks, especially beak gape, in shaping the sound that birds produce. Similarly, humans move their tongues, alter the shape of their upper vocal tracts, and change the shape of their mouths when they sing, laugh, talk and groan.

"The bird’s vocal tract, like the human vocal tract in speech, acts as a resonance filter that can control the sound coming from the mouth," Suthers said. "Beak movements during song also contribute to this filter, but are not as important as changes in the size of the internal vocal tract. Human sopranos use the same technique as the cardinal to increase the loudness of very high notes so they can be heard above the orchestra."

That birds’ throats vibrate when they sing will come as no surprise to birdwatchers. The effect of these oscillations on the birds’ sound production, however, was unknown.

The acoustics of sound-making are complicated. Most tones produced in nature are accompanied by a complex series of higher-pitched, quieter tones called overtones. When the loudness of these overtones is high, the tone sounds more complex. Birds can control the loudness of overtones to increase the tonal purity of their song. Humans use a similar technique to produce different vowel sounds of speech by altering the shapes of their throats, the positions of their tongues and the wideness of their mouths. The PNAS study reveals yet another parallel between birdsong production and human speech.

"At low frequencies, the bird increases the volume of its oropharyngeal cavity and even expands the top of its esophagus," Suthers said. "These air-filled structures form a single cavity with a resonant frequency that matches the main frequency of the song. This amplifies the fundamental frequency and suppresses overtones."

Suthers, biologist Tobias Riede, who is now at the National Center for Voice and Speech (Colorado), Purdue University veterinary scientist William Blevins, and Australian National University acoustic physicist Neville Fletcher used X-ray cinematography to observe and measure the shape and total volume (three-dimensional space, not loudness) of a cardinal’s throat as it spontaneously sang. Explanatory video can be downloaded here:

www.iuinfo.indiana.edu/bem/mr/rsfb/north_cardinal_large.mov (10 megs)

www.iuinfo.indiana.edu/bem/mr/rsfb/north_cardinal_small.mov (4 megs)
(Modeling and animation by Eric Wernert, IU University Information Technology Services Advanced Visualization Lab)

The scientists determined that note changes in birdsong are accompanied by controlled changes in the volume of the upper esophagus as well as the positions of the bird’s larynx and hyoid skeleton (a U-shaped bone formation in the bird’s throat). They also found that the volume of the upper esophagus goes up whenever the main tone produced by the bird goes down, and vice versa. These alterations of shape have the effect of increasing the main tone and suppressing the loudness of overtones.

David Bricker | EurekAlert!
Further information:
http://www.indiana.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>