Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic variance is key to longevity; Migratory restlessness innate in resident birds

04.04.2006
Researchers identify genetic variants that lend clues to living longer
Many studies show that tweaking a single gene can extend life span in animal models. In a new study published in the open access journal PLoS Biology, Drs. Gil Atzmon and Nir Barzilai at the Albert Einstein College of Medicine of Yeshiva University have found that people harbor alleles—alternative forms of a gene—that confer the same sort of longevity advantage.

The researchers looked for genetic clues to longevity in a group of 214 Ashkenazi Jews who have passed or nearly reached 100 years of age. In PLoS Biology, they report that a specific genetic profile, or genotype, was associated with longevity as well as cardiovascular health, lower incidence of hypertension and healthy insulin metabolism.

“Since centenarians typically escape cardiovascular disease, diabetes, and other age-related disorders, we suspected these most senior of senior citizens might possess gene variations that help them reach a ripe old age,” said Dr. Nir Barzilai, director of the Institute for Aging Research at Einstein and senior author on the paper. “If so, then these genotypes should occur with higher frequency in centenarians than in the rest of us.”

Dr. Barzilai and his colleagues recruited Ashkenazi Jews for the study, because this population--descended from a founder group of just 30,000 or so people—is more genetically uniform than other groups, simplifying the challenge of associating a genotype with its physical manifestation (phenotype).

When studying centenarians, finding an age-matched control group is obviously difficult. But since longevity runs in families, the researchers were able to get around this problem by recruiting children of the centenarians and matching them against a control group consisting of other Ashkenazi Jews the same age.

Each participant had blood drawn—to determine their genotype and to measure levels of several cardiovascular disease markers including insulin, cholesterol, triglycerides, high-density lipoproteins (HDL, the “good” cholesterol), low-density lipoproteins (LDL, the “bad” cholesterol), and concentrations of two lipoprotein components called apolipoproteins (APO). In a previous study, the researchers had found that centenarians’ LDL and HDL particle sizes are larger than normal, so these were also measured.

To identify genes associated with long life, they looked for single nucleotide polymorphisms (SNPs) in 36 genes involved in lipoprotein metabolism and other pathways linked to cardiovascular disease. (DNA contains four possible nucleotides—adenine, thymine, guanine and cytosine—and SNPs are variations of a single nucleotide in the DNA sequence.)

This analysis revealed a SNP in a gene with a clear pattern of age-dependent frequency: apolipoprotein C3 (APOC3). This polymorphism substitutes cytosine for adenine in the gene’s promoter region, where gene transcription is initiated. The frequency of finding the APOC3 polymorphism in both copies of the gene was 25% among centenarians, 20% in their offspring, and only 10% in controls.

APOC3 codes for a protein that is a major component of very low density lipoproteins (VLDL, another type of “bad” cholesterol) and also occurs in HDL. The researchers expected that people carrying the APOC3 SNP would have a favorable lipoprotein profile. And indeed, all participants carrying the APOC3 polymorphism had better triglyceride and cholesterol levels, as well as the beneficial larger LDL and HDL particle sizes. In addition, they had a much lower prevalence of hypertension.

Altogether, the statistical links between APOC3 and longevity and the significant associations between favorable lipoprotein-related traits and longevity strongly suggest that the genotype contributes in several ways to cardiovascular health and longevity.

While the genetic pathways driving longevity remain unknown, it seems clear that lipoprotein metabolism plays an important role. The favorable lipoprotein profiles reported by the Einstein researchers correlate with studies of Japanese and Italian centenarians as well. The Einstein researchers hope to uncover more clues regarding the genetic influences on aging—and begin to develop strategies to ease the inevitable slide into our twilight years.

Citation: Atzmon G, Rincon M, Schechter CB, Shuldiner AR, Lipton RB, et al. (2006) Lipoprotein genotype and conserved pathway for exceptional longevity in humans. PLoS
Biol 4(4): e113.

CONTACT:
Karen Gardner
Media / Communications Office
Albert Einstein College of Medicine
Tel. +1-718-430-3101
Email: kgardner@aecom.yu.edu

***

Resident birds display migratory restlessness

Studies of migratory behavior have shown that captive migratory birds demonstrate a seasonally appropriate spontaneous urge to migrate, called Zugunruhe (pronounced zook-oon-roo-ha). This behavior varies with the species studied, with amount and direction of activity reflecting the species’ natural migratory distance and route, suggesting that the migratory urge is innate. In a new study published in the premier open access journal PLoS Biology, Barbara Helm and Eberhard Gwinner took a different approach and discovered that resident species who don’t migrate also exhibit this behavior.

Helm and Gwinner searched for signs of migratory behavior in two subspecies of stonechats, Saxicola torquata, comparing a migrant that breeds in Austria, S. t. rubicola, and its equatorial resident relative, S. t. axillaris. European stonechats are short-distance, nocturnal migrators that begin their journey when daylight lasts just over 12 hours. Since they would otherwise be sleeping at night, nocturnal activity can serve as a proxy for Zugunruhe. African stonechats are sedentary species that do not abandon their breeding grounds in Kenya. To investigate the presence of Zugunruhe in a resident species, the researchers raised and bred the offspring of Kenyan stonechats in their lab in Germany. One group of these birds was held for the duration of a migratory period under the nearly equal light and dark conditions of their native habitat, and a subset remained under these conditions for a year and a half. A control group was exposed to the natural seasonal light fluctuations of southern Germany. Helm and Gwinner recorded the birds’ nocturnal movements with infrared motion sensors, and counted the number of movements within ten-minute intervals. If 20 or more movements were noted, the interval was considered “active.”

Even though the African stonechats experienced no temporal cues—light levels remained constant—their nocturnal activity roughly tracked the season. The African birds’ migratory restlessness, marked by repeated, spontaneous outbursts of nocturnal activity, echoed that seen in European stonechats, though it was less pronounced. The African birds also showed a telling relationship between hatching date and onset of nocturnal activity: just like their migratory counterparts, late-hatching birds became restless earlier and earlier, coinciding with the migratory season.

The African birds’ behavior can be attributed only to Zugunruhe, the researchers concluded, suggesting the influence of an inborn, precisely timed migratory program. The presence of this program in both migrants and residents suggests that the urge to migrate may have evolved in their common ancestor. Helm and Gwinner propose that it may be a common avian feature. Given the proper environmental triggers, this innate migratory program might kick in to allow birds to escape deteriorating habitats caused by global climate changes or other ecological disturbances. With evidence that Zugunruhe exists in nonmigratory birds, researchers can continue exploring migratory behavior in any number of resident-migratory pairs to probe the many ways birds take flight to improve their chances of survival.

Citation: Helm B, Gwinner E (2006) Migratory restlessness in an equatorial nonmigratory bird. PLoS Biol 4(4): e110.

CONTACT:
Barbara Helm
Max Planck Institute for Ornithology
Von-der-Tann Str. 7
Andechs, Germany 82346
Tel. +49-815-237-3114
Fax. +49-815-237-3133
Email: helm@orn.mpg.de

Paul Ocampo | alfa
Further information:
http://dx.doi.org/10.1371/journal.pbio.0040113
http://dx.doi.org/10.1371/journal.pbio.0040110
http://www.plosbiology.org

More articles from Life Sciences:

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Could a particle accelerator using laser-driven implosion become a reality?

24.05.2018 | Physics and Astronomy

Hot cars can hit deadly temperatures in as little as one hour

24.05.2018 | Health and Medicine

Complementing conventional antibiotics

24.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>