Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Malaria, mosquitoes and man - breaking a deadly cycle

Malaria kills a child every thirty seconds in Sub-Saharan Africa, according to recent estimates.

It is a huge problem currently threatening over 40% of the world’s population and still on the increase. The infection causes more than 300 million acute illnesses and at least a million deaths annually, and is recognised as a major factor impeding the development of some of the poorest nations.

Past strategies to kill off mosquitoes with insecticides failed as they developed resistance, just as malaria itself has developed resistance to some of the drugs used to control the disease.

Researchers at the Institute for Science and Technology in Medicine at Keele University, in the West Midlands region of the UK, are focusing their efforts on trying to break the transmission cycle through which the disease is passed on, by studying the complex relationship between the parasite and the mosquito itself.

Paul Eggleston, Professor of Molecular Entomology, School of Life Sciences, Keele University, said: “We have growing problems with insecticide resistance – we now have mosquitoes which are resistant to every class of insecticidal compound that we can throw at them, the parasites themselves are becoming resistant to all of the drugs we can use to try and tackle the disease. So we’re starting to think about this complex set of interactions that take place between the mosquito and the parasite and whether there are ways within that set of interactions that we can tackle the transmission cycle itself.”

Hilary Hurd, Professor of Parasitology, School of Life Sciences, Keele University, said: “I think one of the surprising things is that it takes so long for the malaria parasite to develop in the mosquito. It takes around 15 days and the mosquito in the wild often only lives that long. So it’s very much a tight rope that the parasite’s walking, it must keep it’s mosquito alive long enough for it to survive to transmit it once it’s infective, back into the next person. So that time period is the key aspect of the life cycle.”

One discovery of particular interest is that many of the parasites contained in the blood cells a mosquito absorbs during a blood meal, are killed off within the mosquito’s gut within the first twenty–four hours.

At Keele they think one method by which this is done is a means known as "programmed cell death", so they are investigating how this is triggered, and whether that action could be enhanced.

Another area of weakness they have discovered in this complex parasitic relationship is that the infected female mosquito produces fewer eggs. The likelihood is that this is a resource management strategy so the mosquito lives longer allowing the parasite to mature to an infective stage. If the mosquito was made to lay more eggs, it would die too early for the parasite to mature, again breaking the transmission cycle.

Professor Hilary Hurd: “If we can understand more about the biology and particularly the molecules involved and that are critical to maintaining the cycle then we can try to interfere with those molecules perhaps by manipulating the mosquito genetically so that a key molecule is produced in more abundance or is not produced at all and upset this delicate balance between infection and survival.”

While some researchers in Keele University’s Centre for Applied Entomology and Parasitology, are studying the biology of the mosquito, others are working on this genetic engineering approach, to see if they can inhibit the mosquito from passing on the parasite.

By injecting mosquito embryos with different genes with fluorescent markers that show up under ultraviolet light, they can track the genetically modified mosquitoes as they grow, and also see where the genes go. While they can introduce new genes, its not a precise process, and they can’t yet predict where they might end up in a chromosome, or whether they could damage existing genes.

Professor Paul Eggleston said: “The main limitation is simply one of efficiency. This is a very inefficient and technically demanding procedure, so at Keele we’ve been trying to think up new ways to get round these limitations and inefficiencies. One way is to introduce a docking site into the mosquito chromosome. This is simply a target into which we can integrate any new gene of our choice and we know that if the genes go into this target site they are going to be reliably expressed and we also know that they are not going to have a negative impact on any of the normal genes within the mosquito.”

The aim is to engineer a mosquito which is simply incapable of transmitting malaria.

Professor Paul Eggleston added: “What I would like to do with our new technology is to introduce a whole suite of transgenes, novel genes into the mosquito so we can have what I think of as a multi-hit approach. We want to be able to tackle the parasite at several different places within the insect all at the same time to make sure that no parasites survive and therefore we’ve effectively broken the transmission cycle.”

The ultimate vision is to replace natural populations of malaria carrying mosquitoes in disease endemic areas, with a “genetically modified mosquito” incapable of carrying the malaria parasite, and freeing large sections of the world’s population from the daily tragedy of young lives lost to this deadly disease.

Chris Stone | alfa
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>