Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Even fish don’t swim well when they’re young!

03.04.2006
Do you remember learning to swim? Thrashing around, floundering, until suddenly it all clicks into place and a few feeble strokes of doggy-paddle propel you away from your parent’s arms.

Surely, you think, fish must be born as expert swimmers. Actually, fish larvae are pretty feeble when it comes to an efficient mode of swimming called ‘burst-and-coast’. Dr Ulrike Müller from Wageningen University studies how fish swim: “Fish larvae are the most critical life history stage. In marine fish more than 99% of the mortality occurs in the larval stage so anything that might explain what holds them back is useful”. Müller will present her research on Monday 3rd April, at the Society for Experimental Biology’s Annual Main Meeting in Canterbury [session A5].

The ‘burst-and-coast’ method of swimming involves alternating stages: the fish power forward in a ‘burst’ and then hold their body straight to ‘coast’. Dr Müller and her colleagues might have found what it is that prevents larvae of the zebrafish from reaching top speeds: the larvae cannot maintain their body in a horizontal position while coasting. The research team think this is because larvae don’t have the help of an adult swimbladder and have only small, ineffective side-fins. This lack of control in early days means that the larvae suffer a lot of drag during the coasting phase and this could be something that affects other types of fish. “Many fish larvae hatch without fully formed pectoral fins and all hatch without a swimbladder, so similar problems could occur for them”, predicts Müller.

This conclusion is all the more profound because it refutes two previous theories of poor hatchling swimming, one focusing on the burst phase and the other on the coast.

The former of the two explanations suggests that because the larvae are not very heavy they may not gain much momentum in the burst phase to carry over into the coast phase, while the latter theory states that when the larvae are very small they experience the water in a different way; it appears thicker, like syrup and harder to swim in. “Momentum can explain some of the poor swimming in larvae, but not all, and the difference in coasting ability cannot be explained by differences in body length either”, Müller argues.

Hopefully Müller’s findings about pectoral fins and swimbladders can be used to reduce fish mortality rates. “Fish breeding programs cannot offer their larvae swimming lessons, but once we understand which behaviours cause the fish larvae the most trouble, then it is easier to adjust rearing schemes in aquaculture and to lend a hand to endangered species”, she says.

Lucy Moore | alfa
Further information:
http://www.sebiology.org.uk/Meetings/pageview.asp?S=2&mid=88

More articles from Life Sciences:

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>