Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HIV accessory protein disables host immunity via receptor-protein intermediary

31.03.2006
Findings point to possible novel ways to fight AIDS, immune disorders, sepsis

Researchers at the University of Pennsylvania School of Medicine discovered that an HIV-1 accessory protein called Vpr destroys the host cell’s ability to survive by binding to a host receptor. This, in turn, keeps an important enzyme from activating the cell’s immune system. These findings refine an earlier understanding of Vpr HIV pathogenesis and imply new approaches to treating AIDS, inflammatory diseases such as rheumatoid arthritis, and possibly sepsis. This research appears in the February print issue of Nature Cell Biology.

Over a decade ago, Penn’s David Weiner, PhD, Associate Professor of Pathology and Laboratory Medicine, and colleagues reported that Vpr corrupted the glucocorticoid receptor (GR) pathway of the host cell. Vpr helps to usurp host-cell function by regulating cell differentiation, cell death, and suppressing host-cell immune response proteins. Weiner’s group found that Vpr binds to the glucocorticoid receptor, but it remained unclear whether the GR pathway was required for Vpr to commandeer the host cell’s machinery.

"We started to realize a few years ago that no one had asked the real question: Is the glucocorticoid receptor necessary for Vpr’s effects on the host cell?" recalls Weiner. To answer this question, the researchers used an siRNA, a short sequence of RNA used to silence gene expression, to completely destroy expression of the glucocorticoid receptor protein.

When the researchers kept the glucocorticoid receptor protein from being made, Vpr did not kill host cells. "This indicated that glucocorticoid receptor function is not what’s really necessary for Vpr activity," says Weiner. "The glucocorticoid receptor-Vpr complex must be interacting with something else."

The team, led by first author Muthumani Karuppiah, PhD, Senior Research Investigator, looked for molecules with which the glucocorticoid receptor-Vpr complex would bind and identified PARP-1, another protein that controls the action of NF-kB, a major immune regulator in the host cell. To verify their idea, the researchers used a mouse model in which PARP-1 was knocked out and found that their cells were immune to sepsis (pathogens and their toxins in the blood), because the NF-kB molecules did not go into overdrive, kicking up inflammatory molecules called cytokines. This data demonstrate that Vpr attacks PARP-1 activity, so the mice are immune to toxins created by pathogens – one indication that their immune surveillance has been compromised.

Using biochemistry tests, the researchers were able to show that Vpr does interact with PARP-1 through the glucocorticoid receptor. Vpr hitches a ride on the glucocorticoid receptor, driving glucocorticoid to bind to PARP-1– which, in turn, inactivates it. "Ultimately, glucocorticoid is really an intermediary between Vpr and PARP-1," explains Weiner.

Weiner cites several potential clinical implications of this basic research. These findings show an immune function that had not been previously attributed to the glucocorticoid receptor. "With additional study this research may provide approaches for designing new drugs to fight AIDS, as well as for inflammatory disorders," suggests Weiner. "This research also gives us a new way to think about the relationship between immune activation and sepsis, and it may have implications ultimately for our understanding of novel approaches to prevent sepsis."

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>