Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MSU researchers shake out basis for rice domestication

31.03.2006
Michigan State University scientists have identified the genetic mutation that reduces grain shattering during rice domestication research that will improve production of the crop that feeds more than half of the world’s population.

In an article on the cover of the March 31 edition of Science Magazine, MSU scientists, led by Tao Sang, associate professor of plant biology, identify for the first time the genetic mutation for the reduction of shattering, a key step in the domestication of all cereal crops including corn and wheat.

The researchers were able to pinpoint and confirm that a single base pair mutation in DNA causing an amino acid change in a protein led to non-shattering rice varieties. This slight change in DNA prevented mature rice grains from easily falling from stalks to allow a more effective field harvest. In essence, humans several thousand years ago unknowingly practiced de facto gene selection by planting varieties with this trait.

Shattering in cereal crops refers to grains easily falling off of plants. The shattering trait of the wild forerunners of rice and cereals prevents effective field harvest and is undesirable for cultivation.

"What we can learn from historical plant domestication will benefit our ongoing and future effort to domesticate energy crops that will be equally important to the long-term sustainability of our society," Sang said. "It is remarkable how the earliest farmers could have selected a single mutation in DNA to develop a major food crop of the world."

The researchers first determined which chromosomal regions contained the mutations selected for rice domestication. Chromosome 4 was pegged as being responsible primarily for the reduction of shattering.

"Several hundred hours were spent in the greenhouses where we had to shake the plants and record the various degrees of shattering," Sang said. "Even with all the advances in technology, a careful firsthand observation proves to be essential for biological research."

The researchers then developed a new method for rapid and cost-effective DNA isolation to clone a gene from the chromosomal region. Changbao Li, research associate in plant biology, invented a process that increased the speed of DNA isolation and allowed researchers to efficiently complete the screening of 12,000 seedlings.

"This technical innovation will greatly speed up genetic research for plants since it saved us time and money, yet delivered accurate results," Sang said.

"By tracing the breeding of rice and identifying the genetic mutations, the researchers have opened new doors to the science community that benefit the world through a more effective use of the land and water used to grow rice," said Rich Triemer, chairperson of the Department of Plant Biology.

"These findings will improve yields to a crop that is the staple food for more than half of the world’s population. Our scientists are continuing the legacy started by William Beal more than one hundred years ago of using plant research to benefit the world," he said.

The article, "Rice Domestication by Reducing Shattering," was published today in Science Express an electronic publication designed to get important papers quickly in front of the scientific community prior to being published in Science. Science is the world’s leading journal of original scientific research, global news, and commentary and is published by the American Association for the Advancement of Science.

Tao Sang | EurekAlert!
Further information:
http://www.msu.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>