Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MSU researchers shake out basis for rice domestication

31.03.2006
Michigan State University scientists have identified the genetic mutation that reduces grain shattering during rice domestication research that will improve production of the crop that feeds more than half of the world’s population.

In an article on the cover of the March 31 edition of Science Magazine, MSU scientists, led by Tao Sang, associate professor of plant biology, identify for the first time the genetic mutation for the reduction of shattering, a key step in the domestication of all cereal crops including corn and wheat.

The researchers were able to pinpoint and confirm that a single base pair mutation in DNA causing an amino acid change in a protein led to non-shattering rice varieties. This slight change in DNA prevented mature rice grains from easily falling from stalks to allow a more effective field harvest. In essence, humans several thousand years ago unknowingly practiced de facto gene selection by planting varieties with this trait.

Shattering in cereal crops refers to grains easily falling off of plants. The shattering trait of the wild forerunners of rice and cereals prevents effective field harvest and is undesirable for cultivation.

"What we can learn from historical plant domestication will benefit our ongoing and future effort to domesticate energy crops that will be equally important to the long-term sustainability of our society," Sang said. "It is remarkable how the earliest farmers could have selected a single mutation in DNA to develop a major food crop of the world."

The researchers first determined which chromosomal regions contained the mutations selected for rice domestication. Chromosome 4 was pegged as being responsible primarily for the reduction of shattering.

"Several hundred hours were spent in the greenhouses where we had to shake the plants and record the various degrees of shattering," Sang said. "Even with all the advances in technology, a careful firsthand observation proves to be essential for biological research."

The researchers then developed a new method for rapid and cost-effective DNA isolation to clone a gene from the chromosomal region. Changbao Li, research associate in plant biology, invented a process that increased the speed of DNA isolation and allowed researchers to efficiently complete the screening of 12,000 seedlings.

"This technical innovation will greatly speed up genetic research for plants since it saved us time and money, yet delivered accurate results," Sang said.

"By tracing the breeding of rice and identifying the genetic mutations, the researchers have opened new doors to the science community that benefit the world through a more effective use of the land and water used to grow rice," said Rich Triemer, chairperson of the Department of Plant Biology.

"These findings will improve yields to a crop that is the staple food for more than half of the world’s population. Our scientists are continuing the legacy started by William Beal more than one hundred years ago of using plant research to benefit the world," he said.

The article, "Rice Domestication by Reducing Shattering," was published today in Science Express an electronic publication designed to get important papers quickly in front of the scientific community prior to being published in Science. Science is the world’s leading journal of original scientific research, global news, and commentary and is published by the American Association for the Advancement of Science.

Tao Sang | EurekAlert!
Further information:
http://www.msu.edu

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>