Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


MSU researchers shake out basis for rice domestication

Michigan State University scientists have identified the genetic mutation that reduces grain shattering during rice domestication research that will improve production of the crop that feeds more than half of the world’s population.

In an article on the cover of the March 31 edition of Science Magazine, MSU scientists, led by Tao Sang, associate professor of plant biology, identify for the first time the genetic mutation for the reduction of shattering, a key step in the domestication of all cereal crops including corn and wheat.

The researchers were able to pinpoint and confirm that a single base pair mutation in DNA causing an amino acid change in a protein led to non-shattering rice varieties. This slight change in DNA prevented mature rice grains from easily falling from stalks to allow a more effective field harvest. In essence, humans several thousand years ago unknowingly practiced de facto gene selection by planting varieties with this trait.

Shattering in cereal crops refers to grains easily falling off of plants. The shattering trait of the wild forerunners of rice and cereals prevents effective field harvest and is undesirable for cultivation.

"What we can learn from historical plant domestication will benefit our ongoing and future effort to domesticate energy crops that will be equally important to the long-term sustainability of our society," Sang said. "It is remarkable how the earliest farmers could have selected a single mutation in DNA to develop a major food crop of the world."

The researchers first determined which chromosomal regions contained the mutations selected for rice domestication. Chromosome 4 was pegged as being responsible primarily for the reduction of shattering.

"Several hundred hours were spent in the greenhouses where we had to shake the plants and record the various degrees of shattering," Sang said. "Even with all the advances in technology, a careful firsthand observation proves to be essential for biological research."

The researchers then developed a new method for rapid and cost-effective DNA isolation to clone a gene from the chromosomal region. Changbao Li, research associate in plant biology, invented a process that increased the speed of DNA isolation and allowed researchers to efficiently complete the screening of 12,000 seedlings.

"This technical innovation will greatly speed up genetic research for plants since it saved us time and money, yet delivered accurate results," Sang said.

"By tracing the breeding of rice and identifying the genetic mutations, the researchers have opened new doors to the science community that benefit the world through a more effective use of the land and water used to grow rice," said Rich Triemer, chairperson of the Department of Plant Biology.

"These findings will improve yields to a crop that is the staple food for more than half of the world’s population. Our scientists are continuing the legacy started by William Beal more than one hundred years ago of using plant research to benefit the world," he said.

The article, "Rice Domestication by Reducing Shattering," was published today in Science Express an electronic publication designed to get important papers quickly in front of the scientific community prior to being published in Science. Science is the world’s leading journal of original scientific research, global news, and commentary and is published by the American Association for the Advancement of Science.

Tao Sang | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht The gene of autumn colours
27.10.2016 | Hokkaido University

nachricht Polymer scaffolds build a better pill to swallow
27.10.2016 | The Agency for Science, Technology and Research (A*STAR)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

The gene of autumn colours

27.10.2016 | Life Sciences

Polymer scaffolds build a better pill to swallow

27.10.2016 | Life Sciences

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>