Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Subsurface bacteria release phosphate to convert uranium contamination to immobile form

31.03.2006
In research that could help control contamination from the radioactive element uranium, scientists have discovered that some bacteria found in the soil and subsurface can release phosphate that converts uranium contamination into an insoluble and immobile form.

Based on laboratory studies, Georgia Institute of Technology researchers report promising results using bacterial species from three genera isolated from subsurface soils collected at a U.S. Department of Energy (DOE) Field Research Center site in Oak Ridge, Tenn. Researchers conducted preliminary screenings of many bacterial isolates and found several candidate strains that released inorganic phosphate after hydrolyzing an organo-phosphate source the researchers provided.

The bioremediation research project, funded for three years by DOE’s Environmental Remediation Sciences Division, is in its early stages. Research team member Melanie Beazley, a Ph.D. student in the Georgia Tech School of Earth and Atmospheric Sciences, will present preliminary findings on March 30 at the 231st American Chemical Society National Meeting in Atlanta.

"These organisms release phosphate into the medium, but the precipitation (of uranium phosphate) occurs chemically," explained Assistant Professor of Earth and Atmospheric Sciences Martial Taillefert, co-director of the study. "That is the biomineralization of uranium and the novelty of this approach."

The process begins when the bacteria – from the genera Rhanella, Bacillus and possibly Arthrobacter– degrade an organo-phosphate compound such as glycerol-3-phosphate (G3P) or phytic acid (IP6), which can be present in subsurface soils.

"During their growth, the organisms liberate phosphate they derive from the organo-phosphate compound," said project co-director Patricia Sobecky, an associate professor of biology. "The free phosphate is released to the surrounding media, which is a solution in the lab. Then we conduct assays to see how much uranium is mineralized by the phosphate released by the bacteria."

The bacteria’s role is crucial in this process because uranium cannot dissociate the organo-phosphate compound chemically, Taillefert explained. So uranium in the presence of organo-phosphate alone does not result in significant uranium precipitation.

Sobecky and her Ph.D. student Robert Martinez are conducting the microbiological and physiological component of the research, while Taillefert and Beazley study the uranium chemistry and analyze distribution of different forms of uranium during incubation in the lab.

"The devil’s in the details with the chemistry of uranium: There are numerous forms of uranium in the environment, which are all influenced by the natural properties of soils and groundwater," Taillefert said.

Sobecky added, "What we’re doing now is optimizing the assay conditions and the techniques to analyze the distribution of uranium species in the lab."

Traditionally, DOE has funded research investigating the chemical reduction of uranium contamination. But there are two approaches to immobilizing uranium. One strategy reduces uranium (VI) to uranium (IV), which is, in principle, immobile. But the uranium can re-oxidize even with traces of oxygen from rainwater seeping into the groundwater. The Georgia Tech approach biomineralizes uranium (VI) into an insoluble form of uranium via phosphate precipitation.

As they work toward a bioremediation strategy that will work in the field, researchers must design a mechanism to deal with competing organisms in the soil that might sequester the free phosphate, Sobecky noted. Though their current grant does not cover the cost of a field study, researchers hope to obtain funds in the future to test their strategy at Oak Ridge and potentially other DOE sites. Uranium contamination is a concern at DOE sites because it can migrate to groundwater in surrounding areas, Taillefert noted.

"At this point, we know the organisms we’re studying are active in precipitating uranium phosphate," he said. "…. Now we need to determine how chemically stable it is."

Researchers also have learned that when the bacteria are releasing phosphate from G3P, the bacteria can tolerate the toxic uranium and can continue to grow once the uranium is precipitated by the released phosphate.

"Our challenge now is fine-tuning the conditions around the bacterium so eventually it can thrive and work chemically in a natural setting," Taillefert said.

Jane Sanders | EurekAlert!
Further information:
http://www.edi.gatech.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>