Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Subsurface bacteria release phosphate to convert uranium contamination to immobile form

31.03.2006
In research that could help control contamination from the radioactive element uranium, scientists have discovered that some bacteria found in the soil and subsurface can release phosphate that converts uranium contamination into an insoluble and immobile form.

Based on laboratory studies, Georgia Institute of Technology researchers report promising results using bacterial species from three genera isolated from subsurface soils collected at a U.S. Department of Energy (DOE) Field Research Center site in Oak Ridge, Tenn. Researchers conducted preliminary screenings of many bacterial isolates and found several candidate strains that released inorganic phosphate after hydrolyzing an organo-phosphate source the researchers provided.

The bioremediation research project, funded for three years by DOE’s Environmental Remediation Sciences Division, is in its early stages. Research team member Melanie Beazley, a Ph.D. student in the Georgia Tech School of Earth and Atmospheric Sciences, will present preliminary findings on March 30 at the 231st American Chemical Society National Meeting in Atlanta.

"These organisms release phosphate into the medium, but the precipitation (of uranium phosphate) occurs chemically," explained Assistant Professor of Earth and Atmospheric Sciences Martial Taillefert, co-director of the study. "That is the biomineralization of uranium and the novelty of this approach."

The process begins when the bacteria – from the genera Rhanella, Bacillus and possibly Arthrobacter– degrade an organo-phosphate compound such as glycerol-3-phosphate (G3P) or phytic acid (IP6), which can be present in subsurface soils.

"During their growth, the organisms liberate phosphate they derive from the organo-phosphate compound," said project co-director Patricia Sobecky, an associate professor of biology. "The free phosphate is released to the surrounding media, which is a solution in the lab. Then we conduct assays to see how much uranium is mineralized by the phosphate released by the bacteria."

The bacteria’s role is crucial in this process because uranium cannot dissociate the organo-phosphate compound chemically, Taillefert explained. So uranium in the presence of organo-phosphate alone does not result in significant uranium precipitation.

Sobecky and her Ph.D. student Robert Martinez are conducting the microbiological and physiological component of the research, while Taillefert and Beazley study the uranium chemistry and analyze distribution of different forms of uranium during incubation in the lab.

"The devil’s in the details with the chemistry of uranium: There are numerous forms of uranium in the environment, which are all influenced by the natural properties of soils and groundwater," Taillefert said.

Sobecky added, "What we’re doing now is optimizing the assay conditions and the techniques to analyze the distribution of uranium species in the lab."

Traditionally, DOE has funded research investigating the chemical reduction of uranium contamination. But there are two approaches to immobilizing uranium. One strategy reduces uranium (VI) to uranium (IV), which is, in principle, immobile. But the uranium can re-oxidize even with traces of oxygen from rainwater seeping into the groundwater. The Georgia Tech approach biomineralizes uranium (VI) into an insoluble form of uranium via phosphate precipitation.

As they work toward a bioremediation strategy that will work in the field, researchers must design a mechanism to deal with competing organisms in the soil that might sequester the free phosphate, Sobecky noted. Though their current grant does not cover the cost of a field study, researchers hope to obtain funds in the future to test their strategy at Oak Ridge and potentially other DOE sites. Uranium contamination is a concern at DOE sites because it can migrate to groundwater in surrounding areas, Taillefert noted.

"At this point, we know the organisms we’re studying are active in precipitating uranium phosphate," he said. "…. Now we need to determine how chemically stable it is."

Researchers also have learned that when the bacteria are releasing phosphate from G3P, the bacteria can tolerate the toxic uranium and can continue to grow once the uranium is precipitated by the released phosphate.

"Our challenge now is fine-tuning the conditions around the bacterium so eventually it can thrive and work chemically in a natural setting," Taillefert said.

Jane Sanders | EurekAlert!
Further information:
http://www.edi.gatech.edu

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>