Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using probes to control chemistry - molecule by molecule

31.03.2006
Using probes originally designed to detect and image topographical features on surfaces, scientists at the U.S. Department of Energy’s Brookhaven National Laboratory have demonstrated the ability to initiate and spatially localize chemical reactions on the submicron scale.

They have been able to reliably manipulate chemistry on a very, very small scale in contrast to normal beaker-type reactions carried out in bulk. Such "site-selective" chemistry, taken down to the molecule-by-molecule level, could lead to new ways to etch small-scale electronic circuits, the development of extremely sensitive chemical sensors, as well as a better understanding and control of chemical reactions such as those used to convert sunlight into electricity in solar cells.

"Atomic force microscopy (AFM) uses probes that are analogous to the stylus on an old-style record player," says Brookhaven Lab materials scientist Stanislaus S. Wong. However, as opposed to "feeling" the nature of slight variations of pits within record grooves, AFM probes normally detect intermolecular interactions, related to changes in surface chemistry. "What we’ve demonstrated in our work is the ability to alter the AFM probe so it can be used not just passively, to sense chemistry, but actively, to initiate or control chemical reactions on a surface," Wong said.

In their proof-of-principle experiment, Wong’s group attached titanium dioxide nanoparticles to the end of a conventional AFM probe and used it to photocatalytically oxidize selected sites on a thin film of photoreactive dye -- a model for understanding photocatalysis in solar cells. Mandakini Kanungo, a postdoctoral researcher in Wong’s lab, will describe this work in a talk at the 231st national meeting of the American Chemical Society (ACS) in Atlanta, Georgia, on Thursday, March 30, 2006.

In the experiment, oxidized and unaffected areas of the dye were often separated by a mere 0.1 microns (millionths of a meter). The hope is to increase the spatial resolution of the technique to affect changes molecule by molecule, or at the one-nanometer (billionths of a meter) scale, Wong says.

Being able to control chemistry at this level has many potential applications. First, it gives the scientists deeper insight into the kinetics of reactions at the molecular level when, for example, a catalyst triggers the in situ oxidation of a chemical in the presence of light. This reaction is important toward understanding how to convert sunlight into useable forms of energy such as electricity. A "close-up" view of the chemistry will allow scientists to experiment with different types of catalyst particles, sizes and shapes of particles, and other characteristics to see precisely how these changes affect the kinetics and other dynamic properties associated with the photocatalytic process. This work could ultimately lead to the design of more efficient catalysts and more efficient solar cells.

In another application, Wong says, "You can use the AFM tip almost like an ultrafine pencil to draw out areas that you would like to react. This creates nanometer-scale ’lines’ that are different from the chemistry of surrounding areas on the substrate." In essence, he says, you can etch out such "lines of reactivity," using chemistry to "draw," for example, nanoscale circuits. Such small-scale circuits could further shrink the scale of electronic devices, as well as increase the efficiency and/or speed of data storage and retrieval.

One important benefit of this technique is that it is environmentally friendly, Wong says, using no electric current or potentially harmful reaction conditions. Furthermore, the technique has such high specificity that it offers the potential for single-molecule detection and analysis -- a benefit with possible applications in refined chemical sensor technology. Such sensors might be able to detect as little as a single molecule of a potentially hazardous material released, for example, in a terror attack.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>