Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Embryos tell story of Earth’s earliest animals

31.03.2006
Much of what scientists learn about the evolution of Earth’s first animals will have to be gleaned from spherical embryos fossilized under very specific conditions, according to a new study by Indiana University Bloomington and University of Bristol researchers in this week’s Proceedings of the National Academy of Sciences.

Purported animal embryo fossils have been reported continuously over the last 12 years, mainly by paleontologists working in China. Scientists disagree about whether the fossils are actually animal embryos or even if they are animals.


Sea urchins and most other animals begin their embryonic development as small clusters of cells, called blastulas. The blastulas are surrounded by a protective fertilization envelope

"The fossils look great. The problem is, if you know anything about embryos, their fossilization just doesn’t seem likely," said IU Bloomington Professor of Biology Rudolf Raff, one of the report’s authors. "It’s like trying to fossilize soap bubbles. Some investigators showed that these fossils are being preserved with calcium phosphate, but they haven’t explained how embryos could survive long enough for that to happen. We do that."

The group of scientists, led by Rudolf Raff and IUB Department of Biology Chair Elizabeth Raff, explain what conditions are most likely to facilitate the fossilization of early animal embryos, as well as what factors are not likely to affect fossilization. They used two sea urchin species as models, Heliocidaris erythrogramma and Lytechinus pictus.

"We wanted to find what conditions would allow a dead embryo to be preserved for about a month, enough time for it to be encased in minerals," Rudolf Raff said.

The dead spherical embryos do not last long under normal seawater conditions. If the cell’s own degradation processes don’t destroy it, nearby bacteria will. The embryos must die in the presence of a so-called "reducing" substance, such as hydrogen sulfide. Such reducing substances slow or stop the internal degradation processes that occur very soon after cells die and also inhibit voracious bacteria.

Hydrogen sulfide is known to have been present in the environment half a billion years ago, at the time of the animal kingdom’s origin, and when the embryos died, because sulfur-containing pyrite ("fool’s gold") is found in the fossils. Today, hydrogen sulfide exists in significant concentrations at the bottom of the ocean, especially in the vicinity of deep sea vents. Because hydrogen sulfide is extremely toxic (and flammable), the scientists used beta-mercaptoethanol, which exerts similar effects.

The scientists also found that embryo size does not influence the fossilization process. Sea urchin species whose animal embryos are small (a tenth of a millimeter) were just as likely to be fossilized as those of larger cousins (about half a millimeter).

"This is good news," Raff said. "Embryo size tells us a great deal about the evolution and development of these organisms."

The fertilization envelope, a semi-hard membrane that surrounds the urchin envelope, is crucial to the fossilization of the embryo. Without the membrane, or with a broken membrane, embryos degraded quickly. Likewise, soft-bodied larvae that hatch from the egg-like fertilization envelope did not fossilize, even under reducing conditions.

The scientists predict early animal fossils from 500 million years ago will be embryos encased in the fertilization envelope and will have been fossilized under highly reducing conditions. This suggests "biases in distribution of fossil embryos," the scientists write, since fossils of more mature animal forms are likely to be limited, maybe non-existent.

Much mystery surrounds the sudden appearance of animals in the fossil record, between 500 and 600 million years ago. Within a few million years, the fossil record goes from zero evidence of animals to great diversity in animal forms, including anomalocarids and trilobites. Harvard University biologist and historian Stephen Jay Gould brought this "Cambrian explosion" to the popular consciousness in 1990 with his book Wonderful Life.

In 1998, Shuhai Xiao and Yun Zhang of Beijing University and Harvard’s Andrew Knoll reported in the journal Nature a stunning collection of 570-million-year-old fossils interpreted as algae and animals. Many scientists doubted the Nature report, citing a lack of evidence that something as soft as an embryo could survive long enough for fossilization to occur.

"It appears these formations in China had the conditions that would have preserved animal embryos," Raff said. "Hopefully, the question about whether this can happen can be put to rest."

What distinguishes animals from other organisms is the ability to ingest other organisms, either by consuming them as food, as humans do, or by digesting food externally and sucking up the aftermath, in the manner of starfish.

David Bricker | EurekAlert!
Further information:
http://www.indiana.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>