Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Embryos tell story of Earth’s earliest animals

31.03.2006
Much of what scientists learn about the evolution of Earth’s first animals will have to be gleaned from spherical embryos fossilized under very specific conditions, according to a new study by Indiana University Bloomington and University of Bristol researchers in this week’s Proceedings of the National Academy of Sciences.

Purported animal embryo fossils have been reported continuously over the last 12 years, mainly by paleontologists working in China. Scientists disagree about whether the fossils are actually animal embryos or even if they are animals.


Sea urchins and most other animals begin their embryonic development as small clusters of cells, called blastulas. The blastulas are surrounded by a protective fertilization envelope

"The fossils look great. The problem is, if you know anything about embryos, their fossilization just doesn’t seem likely," said IU Bloomington Professor of Biology Rudolf Raff, one of the report’s authors. "It’s like trying to fossilize soap bubbles. Some investigators showed that these fossils are being preserved with calcium phosphate, but they haven’t explained how embryos could survive long enough for that to happen. We do that."

The group of scientists, led by Rudolf Raff and IUB Department of Biology Chair Elizabeth Raff, explain what conditions are most likely to facilitate the fossilization of early animal embryos, as well as what factors are not likely to affect fossilization. They used two sea urchin species as models, Heliocidaris erythrogramma and Lytechinus pictus.

"We wanted to find what conditions would allow a dead embryo to be preserved for about a month, enough time for it to be encased in minerals," Rudolf Raff said.

The dead spherical embryos do not last long under normal seawater conditions. If the cell’s own degradation processes don’t destroy it, nearby bacteria will. The embryos must die in the presence of a so-called "reducing" substance, such as hydrogen sulfide. Such reducing substances slow or stop the internal degradation processes that occur very soon after cells die and also inhibit voracious bacteria.

Hydrogen sulfide is known to have been present in the environment half a billion years ago, at the time of the animal kingdom’s origin, and when the embryos died, because sulfur-containing pyrite ("fool’s gold") is found in the fossils. Today, hydrogen sulfide exists in significant concentrations at the bottom of the ocean, especially in the vicinity of deep sea vents. Because hydrogen sulfide is extremely toxic (and flammable), the scientists used beta-mercaptoethanol, which exerts similar effects.

The scientists also found that embryo size does not influence the fossilization process. Sea urchin species whose animal embryos are small (a tenth of a millimeter) were just as likely to be fossilized as those of larger cousins (about half a millimeter).

"This is good news," Raff said. "Embryo size tells us a great deal about the evolution and development of these organisms."

The fertilization envelope, a semi-hard membrane that surrounds the urchin envelope, is crucial to the fossilization of the embryo. Without the membrane, or with a broken membrane, embryos degraded quickly. Likewise, soft-bodied larvae that hatch from the egg-like fertilization envelope did not fossilize, even under reducing conditions.

The scientists predict early animal fossils from 500 million years ago will be embryos encased in the fertilization envelope and will have been fossilized under highly reducing conditions. This suggests "biases in distribution of fossil embryos," the scientists write, since fossils of more mature animal forms are likely to be limited, maybe non-existent.

Much mystery surrounds the sudden appearance of animals in the fossil record, between 500 and 600 million years ago. Within a few million years, the fossil record goes from zero evidence of animals to great diversity in animal forms, including anomalocarids and trilobites. Harvard University biologist and historian Stephen Jay Gould brought this "Cambrian explosion" to the popular consciousness in 1990 with his book Wonderful Life.

In 1998, Shuhai Xiao and Yun Zhang of Beijing University and Harvard’s Andrew Knoll reported in the journal Nature a stunning collection of 570-million-year-old fossils interpreted as algae and animals. Many scientists doubted the Nature report, citing a lack of evidence that something as soft as an embryo could survive long enough for fossilization to occur.

"It appears these formations in China had the conditions that would have preserved animal embryos," Raff said. "Hopefully, the question about whether this can happen can be put to rest."

What distinguishes animals from other organisms is the ability to ingest other organisms, either by consuming them as food, as humans do, or by digesting food externally and sucking up the aftermath, in the manner of starfish.

David Bricker | EurekAlert!
Further information:
http://www.indiana.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>