Single cell amoeba increases MRSA numbers 1000 -fold.

The single cell amoeba, Acanthamoeba polyphagam, commonly eats and digests environmental bacteria. It also engulfs pathogens such as MRSA. However, instead of being digested by the amoeba, MRSA survives and replicates whilst inside the amoeba. Prof Michael Brown and colleagues at the University of Bath, found that MRSA in association with amoebae increased in numbers 1000- fold.

The pathogenic bacteria, Legionella, also replicate inside amoebae and are then released into the environment. The released bacteria are less susceptible to biocides and antimicrobials, and are more invasive than the same bacteria which have grown freely. Replication within amoebae may have the same effect on MRSA.

Amoebae, as cysts, are often dispersed by air currents, providing another means of spreading any trapped bacteria.

“We need more research into the role of amoeba in the spread of MRSA – hospitals should aim to eradicate amoebae as well as the bacteria themselves” said Prof. Brown of the Department of Pharmacy and Pharmacology, University of Bath.

Media Contact

Lucy Mansfield alfa

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors