Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists to tackle illness with ‘silver bullet’

31.03.2006
It has been known for some time that silver is highly toxic to a wide range of bacteria, and silver-based compounds have been used extensively in bactericidal applications.

This property of silver has caused great interest especially as new resistant strains of bacteria have become a serious problem in public health.


Transmission Electron Microscope (TEM) image of silver nanoparticles produced by the Leicester source with an average diameter of about 15nm (1,000 times smaller than the width of a human hair). The average size of the particles emerging from the machine can be controlled in the range 5nm - 20nm.

For example MRSA bacteria kill 5,000 hospital patients a year in the UK alone and any method of attacking them, not involving normal antibiotics, is becoming increasingly important.

Silver in the form of nanoparticles is even more effective, partly because of the high surface/volume fraction so that a large proportion of silver atoms are in direct contact with their environment. In addition, nanoparticles are sufficiently small to pass through outer cell membranes and enter cells’ inner mechanisms.

A recent medical study showed that only silver nanoparticles with sizes less than 10 nm (1,000 times smaller than the width of a human hair) were able to enter cells and disrupt them. The same study showed that silver nanoparticles are highly toxic to the bacteria that colonise the lungs of cystic fibrosis sufferers often with fatal consequences.

Another study indicated that there may be a role for nanoparticles in the fight against AIDS by showing that silver nanoparticles of the same size attach themselves to structures on the surface of the HIV virus and prevent it from binding to host cells.

Professor of Nanoscience at the University of Leicester, Chris Binns, commented: “Clearly there are important medical treatments using silver nanoparticles and this is just one of the examples of how nanotechnology shows great promise in healthcare.

“One of the problems, however, is in getting assemblies of nanoparticles of the same size into the right environment, for example on the surface of a wound dressing or in a colloidal suspension that can either be turned into an aerosol or injected into the body.

“The medical studies carried out so far acknowledge that in existing commercially available nanoparticle suspensions, only 1% of the material consists of nanoparticles of the right size. The Condensed Matter Physics group in Leicester has many years’ experience in designing and building sources of size-selected metal nanoparticles.

“With support from the “Higher Education Reach –Out to Business and the Community Innovation and Regional Fund” (HIRF) this is now being put to good use to develop a machine specifically to produce nanoparticle assemblies for medical applications. The impressive uniformity of silver nanoparticles produced by the source is illustrated in the figure (available on request) and the design enables the nanoparticles to either be coated onto a solid surface or incorporated into a liquid suspension.”

Trials of the anti-microbial effectiveness of the nanoparticle suspensions will begin shortly.

Alex Jelley | alfa
Further information:
http://www.le.ac.uk

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>